Normalized defining polynomial
\( x^{20} - 2 x^{19} + 16 x^{17} - 46 x^{16} - 88 x^{15} + 270 x^{14} - 322 x^{13} + 491 x^{12} + 33 x^{11} + 325 x^{10} - 1159 x^{9} + 5856 x^{8} - 10579 x^{7} + 5165 x^{6} - 13069 x^{5} + 13317 x^{4} + 7840 x^{3} + 32779 x^{2} + 1658 x + 5671 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(661024130898095931054356037=3^{10}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{37} a^{18} + \frac{4}{37} a^{17} + \frac{15}{37} a^{16} - \frac{4}{37} a^{15} + \frac{17}{37} a^{14} + \frac{13}{37} a^{13} + \frac{10}{37} a^{12} - \frac{9}{37} a^{11} + \frac{14}{37} a^{10} + \frac{13}{37} a^{9} + \frac{18}{37} a^{8} + \frac{16}{37} a^{7} + \frac{18}{37} a^{6} + \frac{4}{37} a^{5} - \frac{5}{37} a^{4} + \frac{5}{37} a^{2} - \frac{11}{37} a - \frac{3}{37}$, $\frac{1}{3287428458108901300610723292348370887079119377333} a^{19} - \frac{21550209849849950552869080609893467747103263165}{3287428458108901300610723292348370887079119377333} a^{18} - \frac{887600938423600339006480192807269811659620965244}{3287428458108901300610723292348370887079119377333} a^{17} - \frac{606547281543176752487542152458334977750857368655}{3287428458108901300610723292348370887079119377333} a^{16} + \frac{1295333345227817832589690094278034202175712553438}{3287428458108901300610723292348370887079119377333} a^{15} + \frac{1323136685212039511535938544039238473202599393199}{3287428458108901300610723292348370887079119377333} a^{14} - \frac{1590008036584122102198049053422358910883020822310}{3287428458108901300610723292348370887079119377333} a^{13} - \frac{1458979009249215820047516285196558809183696366275}{3287428458108901300610723292348370887079119377333} a^{12} + \frac{560634376262600006506244249005726858552964654134}{3287428458108901300610723292348370887079119377333} a^{11} - \frac{696577780813065090778890815769230318941137919646}{3287428458108901300610723292348370887079119377333} a^{10} - \frac{1491194089694642094422676932625234367352509256066}{3287428458108901300610723292348370887079119377333} a^{9} + \frac{168402262875442090702362616122730075497298266012}{3287428458108901300610723292348370887079119377333} a^{8} - \frac{711360849770981084791356890380322093046221682079}{3287428458108901300610723292348370887079119377333} a^{7} + \frac{1342036301615099339799720892026630067042993645396}{3287428458108901300610723292348370887079119377333} a^{6} - \frac{1446032964069637634198073766156622286320562893721}{3287428458108901300610723292348370887079119377333} a^{5} - \frac{1623264022032782026266341181062680804957220544359}{3287428458108901300610723292348370887079119377333} a^{4} + \frac{54226839057931986855263646395853772693528383589}{3287428458108901300610723292348370887079119377333} a^{3} + \frac{1306051674872350054995908337440565140684184075849}{3287428458108901300610723292348370887079119377333} a^{2} + \frac{336440123557833862151483825158681736268066261946}{3287428458108901300610723292348370887079119377333} a - \frac{185885054230347910218992742697794252315890587218}{3287428458108901300610723292348370887079119377333}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69540.12284114186 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.33957.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |