Normalized defining polynomial
\( x^{20} - 6 x^{19} + 31 x^{18} - 152 x^{17} + 706 x^{16} - 2906 x^{15} + 9830 x^{14} - 25769 x^{13} + 53282 x^{12} - 89868 x^{11} + 128026 x^{10} - 134825 x^{9} + 131311 x^{8} - 127579 x^{7} + 108632 x^{6} - 43565 x^{5} + 21600 x^{4} - 11684 x^{3} + 8365 x^{2} + 588 x + 153 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6593371018023678808268905753944157=397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{234002651019180290847684699699118432480795697083045887} a^{19} - \frac{10380107773802259864483831803224959369023301480455053}{78000883673060096949228233233039477493598565694348629} a^{18} + \frac{115736084886232362141939132913719851792351857273478227}{234002651019180290847684699699118432480795697083045887} a^{17} - \frac{110333685039649633119917532034822887660756912723710828}{234002651019180290847684699699118432480795697083045887} a^{16} - \frac{19294715483505462455641890478459578409369235513537954}{234002651019180290847684699699118432480795697083045887} a^{15} - \frac{95494897961456424748683676498793960312140953744682688}{234002651019180290847684699699118432480795697083045887} a^{14} + \frac{40925820385052005353966317836694843035192874310132092}{234002651019180290847684699699118432480795697083045887} a^{13} + \frac{79005280194552741612148314847347673596845826314041741}{234002651019180290847684699699118432480795697083045887} a^{12} - \frac{14985987783244405724579064305741519690952203647516153}{234002651019180290847684699699118432480795697083045887} a^{11} - \frac{19246673803946635267072212340835943808686686762216360}{78000883673060096949228233233039477493598565694348629} a^{10} + \frac{84489357948448020834176716882787478722406534767726008}{234002651019180290847684699699118432480795697083045887} a^{9} - \frac{75884409521645852905469030048903745963487933239791342}{234002651019180290847684699699118432480795697083045887} a^{8} - \frac{52624098430895753241456245262445542102525544493588867}{234002651019180290847684699699118432480795697083045887} a^{7} + \frac{106508383137079893531372085252633728714208654074259454}{234002651019180290847684699699118432480795697083045887} a^{6} + \frac{57122445301625199385203477721940078155179313816425956}{234002651019180290847684699699118432480795697083045887} a^{5} - \frac{59114452566922856543226763745129437114265667087933842}{234002651019180290847684699699118432480795697083045887} a^{4} + \frac{26631998350829290348587441886352787568390003732462054}{78000883673060096949228233233039477493598565694348629} a^{3} + \frac{68874928976344999340155795878258360607465209942831745}{234002651019180290847684699699118432480795697083045887} a^{2} + \frac{58114996364151137501696347942631431990747218941277925}{234002651019180290847684699699118432480795697083045887} a + \frac{16601171675891813050297241096162501224271644466967630}{78000883673060096949228233233039477493598565694348629}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 212644705.341 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n845 are not computed |
| Character table for t20n845 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||