Normalized defining polynomial
\( x^{20} - 2 x^{19} + 16 x^{18} - 40 x^{17} + 153 x^{16} - 409 x^{15} + 531 x^{14} - 631 x^{13} + 1182 x^{12} - 2207 x^{11} + 9841 x^{10} - 31915 x^{9} + 59913 x^{8} - 71946 x^{7} + 315927 x^{6} - 188012 x^{5} - 202487 x^{4} - 100612 x^{3} + 686038 x^{2} + 650199 x + 329149 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6593371018023678808268905753944157=397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1203158048252636817788942142578564974158528460181878145673780503} a^{19} + \frac{18049671645667683271350436873315781938995377142574425173721441}{38811549943633445735127165889631128198662208392963811150767113} a^{18} - \frac{103423793501004135966940190790428315057072752562836999641835577}{1203158048252636817788942142578564974158528460181878145673780503} a^{17} + \frac{23109186646858075470738485320870430113073436798784468337242845}{1203158048252636817788942142578564974158528460181878145673780503} a^{16} + \frac{303991549870527520976652013321361338345942703400330803418007036}{1203158048252636817788942142578564974158528460181878145673780503} a^{15} - \frac{172209418563086065071119458978136872273696210629401992214829536}{1203158048252636817788942142578564974158528460181878145673780503} a^{14} - \frac{363841798914822074921023184049398872351563893440502623519719990}{1203158048252636817788942142578564974158528460181878145673780503} a^{13} + \frac{211157460490361653265210804277160886654754053256672739943691165}{1203158048252636817788942142578564974158528460181878145673780503} a^{12} - \frac{481323434202641028452683532852840225469335618116692329578574737}{1203158048252636817788942142578564974158528460181878145673780503} a^{11} + \frac{15582215532384852847790947990983289894446866377010495524272408}{38811549943633445735127165889631128198662208392963811150767113} a^{10} - \frac{126321991754004567365693238755111867144271285401449366558337561}{1203158048252636817788942142578564974158528460181878145673780503} a^{9} - \frac{355441670690184648467977614281957619820314773084293234822304323}{1203158048252636817788942142578564974158528460181878145673780503} a^{8} + \frac{8342785889885960462785575560707027631149876647577070036775596}{17957582809740848026700628993709924987440723286296688741399709} a^{7} - \frac{324312726426526131663517889592985379215248274885229957602382488}{1203158048252636817788942142578564974158528460181878145673780503} a^{6} + \frac{284915532326846316332957802487820901398155213364278355554648957}{1203158048252636817788942142578564974158528460181878145673780503} a^{5} - \frac{183440222663293532208086836193021803636510051105398790421187247}{1203158048252636817788942142578564974158528460181878145673780503} a^{4} + \frac{197576313824578776429507819735032694401521886088448996696290132}{1203158048252636817788942142578564974158528460181878145673780503} a^{3} + \frac{454622778017018277607361789994905227954880040245954435938916873}{1203158048252636817788942142578564974158528460181878145673780503} a^{2} + \frac{535037566899849657347703540246825616574120609617828397994838250}{1203158048252636817788942142578564974158528460181878145673780503} a + \frac{235212702476945044387140290942396790203752044112601610421511186}{1203158048252636817788942142578564974158528460181878145673780503}$
Class group and class number
$C_{2}\times C_{194}$, which has order $388$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 735584.085831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||