Normalized defining polynomial
\( x^{20} - 3 x^{19} + 43 x^{18} - 102 x^{17} + 794 x^{16} - 2060 x^{15} + 9343 x^{14} - 20615 x^{13} + 61749 x^{12} - 111807 x^{11} + 246498 x^{10} - 355752 x^{9} + 559168 x^{8} - 595790 x^{7} + 687028 x^{6} - 502104 x^{5} + 494386 x^{4} - 210983 x^{3} + 231277 x^{2} - 40869 x + 57087 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6593371018023678808268905753944157=397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} + \frac{1}{9} a^{15} + \frac{1}{3} a^{14} + \frac{2}{9} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{2660338210142927728139683612247588630186869066949861271} a^{19} - \frac{31683299789788441883215633408513223563988772661708006}{886779403380975909379894537415862876728956355649953757} a^{18} + \frac{221059012193393728409823312659949952318994658586815992}{2660338210142927728139683612247588630186869066949861271} a^{17} - \frac{433845635344753482352044424647593918226272924699525300}{2660338210142927728139683612247588630186869066949861271} a^{16} - \frac{437012291958843750232567040498893432026727126597289617}{2660338210142927728139683612247588630186869066949861271} a^{15} + \frac{1283932721483218103254446735939730418549997487545790580}{2660338210142927728139683612247588630186869066949861271} a^{14} - \frac{1011487304954224579004083327336472775110933361063930137}{2660338210142927728139683612247588630186869066949861271} a^{13} - \frac{125352768691227624807585126044719637550631314794850455}{886779403380975909379894537415862876728956355649953757} a^{12} + \frac{28037151963109335063091764136443659113245465415148044}{886779403380975909379894537415862876728956355649953757} a^{11} - \frac{28376325949034917115079302273042085946341328365202386}{295593134460325303126631512471954292242985451883317919} a^{10} + \frac{90766791833215477963483206519452290921897592677562901}{295593134460325303126631512471954292242985451883317919} a^{9} + \frac{113391486320211559105016028227501791349406462824177683}{886779403380975909379894537415862876728956355649953757} a^{8} - \frac{949324589061409322757309155221223636353732401695541206}{2660338210142927728139683612247588630186869066949861271} a^{7} + \frac{1134090275444513684326429317276398734634668220161591438}{2660338210142927728139683612247588630186869066949861271} a^{6} + \frac{38254080398380658647436666525466253357243361285080628}{2660338210142927728139683612247588630186869066949861271} a^{5} - \frac{607313074273082161703511015712993200476007332736715777}{2660338210142927728139683612247588630186869066949861271} a^{4} - \frac{930788213103446327498578941662876680216775650340407921}{2660338210142927728139683612247588630186869066949861271} a^{3} - \frac{155895192126056912160092661701430229560406439265637712}{2660338210142927728139683612247588630186869066949861271} a^{2} + \frac{204413857461947907610283600385979451770644209539833902}{886779403380975909379894537415862876728956355649953757} a + \frac{29447099419217803060083644307771406961840082642414234}{295593134460325303126631512471954292242985451883317919}$
Class group and class number
$C_{466}$, which has order $466$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 735584.085831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||