Normalized defining polynomial
\( x^{20} - 6 x^{19} + 21 x^{18} + 12 x^{17} - 95 x^{16} - 330 x^{15} + 12005 x^{14} - 82773 x^{13} + 448049 x^{12} - 1778799 x^{11} + 6315713 x^{10} - 18317397 x^{9} + 49311908 x^{8} - 110220879 x^{7} + 233803276 x^{6} - 400713435 x^{5} + 668852055 x^{4} - 824644431 x^{3} + 1045945552 x^{2} - 742650399 x + 656899101 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(659143138772292919540205490019944661801=19^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{4}{9} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{15} - \frac{1}{9} a^{13} - \frac{4}{27} a^{12} - \frac{1}{27} a^{11} + \frac{4}{27} a^{10} + \frac{4}{9} a^{8} + \frac{8}{27} a^{7} + \frac{2}{9} a^{6} - \frac{2}{9} a^{5} - \frac{2}{27} a^{4} + \frac{1}{27} a^{3} + \frac{2}{27} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{27} a^{16} + \frac{2}{27} a^{13} + \frac{2}{27} a^{12} - \frac{2}{27} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{27} a^{8} - \frac{1}{9} a^{7} + \frac{1}{27} a^{5} - \frac{11}{27} a^{4} - \frac{1}{27} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{17} + \frac{1}{81} a^{16} - \frac{1}{81} a^{15} - \frac{1}{81} a^{14} + \frac{1}{81} a^{13} - \frac{8}{81} a^{12} - \frac{10}{81} a^{11} - \frac{10}{81} a^{10} - \frac{7}{81} a^{9} + \frac{20}{81} a^{8} - \frac{29}{81} a^{7} - \frac{11}{81} a^{6} + \frac{20}{81} a^{5} + \frac{38}{81} a^{4} + \frac{7}{81} a^{3} + \frac{25}{81} a^{2} - \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{2511} a^{18} + \frac{5}{2511} a^{17} - \frac{2}{279} a^{16} - \frac{5}{2511} a^{15} - \frac{13}{837} a^{14} - \frac{10}{2511} a^{13} + \frac{41}{837} a^{12} - \frac{314}{2511} a^{11} - \frac{254}{2511} a^{10} + \frac{415}{2511} a^{9} - \frac{34}{279} a^{8} + \frac{287}{2511} a^{7} + \frac{211}{837} a^{6} - \frac{1019}{2511} a^{5} + \frac{43}{837} a^{4} + \frac{893}{2511} a^{3} - \frac{854}{2511} a^{2} - \frac{83}{279} a + \frac{64}{279}$, $\frac{1}{1172744290403517368164827216110580473737079928624707212698141} a^{19} - \frac{51400287977168833819687899400071035132416975164561645560}{1172744290403517368164827216110580473737079928624707212698141} a^{18} + \frac{4824317835324817003144338940431074447801470975985175171664}{1172744290403517368164827216110580473737079928624707212698141} a^{17} + \frac{6203157371173229990236758834661620116864826588577829823328}{1172744290403517368164827216110580473737079928624707212698141} a^{16} - \frac{16186428513980920062023136333093182814570074960964644083972}{1172744290403517368164827216110580473737079928624707212698141} a^{15} + \frac{34326239649019529048462726037367907498254196841181658053148}{1172744290403517368164827216110580473737079928624707212698141} a^{14} - \frac{178734076788242331489806851112884161110095588727552197234358}{1172744290403517368164827216110580473737079928624707212698141} a^{13} + \frac{62740051308982023089484359142911647201293917209494280885678}{1172744290403517368164827216110580473737079928624707212698141} a^{12} + \frac{35443886141321649866698279686875206124975126665729045895936}{390914763467839122721609072036860157912359976208235737566047} a^{11} - \frac{15642486535260702930308699768884310450742756090740013804179}{390914763467839122721609072036860157912359976208235737566047} a^{10} + \frac{151270018836562830843855049856302563004592263706203280122895}{1172744290403517368164827216110580473737079928624707212698141} a^{9} + \frac{583833108566415587134243514098601328632363250843447628492895}{1172744290403517368164827216110580473737079928624707212698141} a^{8} + \frac{365360242786100055563782280510604323538021357282941415062734}{1172744290403517368164827216110580473737079928624707212698141} a^{7} - \frac{42142068645399485630085515035916295680490115501186649395847}{1172744290403517368164827216110580473737079928624707212698141} a^{6} + \frac{166839464713056836252198055387077433876956170227701285161754}{1172744290403517368164827216110580473737079928624707212698141} a^{5} - \frac{65616459153247405607032321787737182198806618069122491417556}{1172744290403517368164827216110580473737079928624707212698141} a^{4} - \frac{388992447607146545098981975615178502313755021682429868256922}{1172744290403517368164827216110580473737079928624707212698141} a^{3} - \frac{454204373549635901915083676427515142030178246832955504925363}{1172744290403517368164827216110580473737079928624707212698141} a^{2} + \frac{3296581536023802981783887474181844601753372128975026355820}{43434973718648791413512119115206684212484441800915081951783} a - \frac{485741900991793202908503133627170566444569534812097429805}{1569938809107787641452245269224337983583775004852352359703}$
Class group and class number
$C_{2}\times C_{2}\times C_{58}\times C_{1334}$, which has order $309488$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-7619}) \), \(\Q(\sqrt{-19}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.64024396763274499.1 x5, 10.0.25673783102073074099.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||