Normalized defining polynomial
\( x^{20} - 3 x^{19} + 282 x^{18} - 224 x^{17} + 30751 x^{16} + 31501 x^{15} + 1741913 x^{14} + 4226052 x^{13} + 59459057 x^{12} + 181083914 x^{11} + 1332452796 x^{10} + 3629444756 x^{9} + 18834291180 x^{8} + 40625770060 x^{7} + 156097776357 x^{6} + 265083906914 x^{5} + 993121367567 x^{4} + 784430792742 x^{3} + 3703527579233 x^{2} + 1482365904611 x + 5214568583503 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65823070378107273576523817203914035257553049=3^{10}\cdot 401^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{2} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} + \frac{1}{6} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{14} - \frac{1}{3} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{2274} a^{18} + \frac{30}{379} a^{17} - \frac{11}{379} a^{16} - \frac{4}{379} a^{15} + \frac{51}{758} a^{14} + \frac{245}{758} a^{13} - \frac{277}{758} a^{12} - \frac{101}{379} a^{11} - \frac{1091}{2274} a^{10} + \frac{107}{758} a^{9} - \frac{335}{758} a^{8} + \frac{84}{379} a^{7} - \frac{211}{758} a^{6} - \frac{139}{758} a^{5} + \frac{98}{379} a^{4} + \frac{66}{379} a^{3} + \frac{757}{2274} a^{2} - \frac{75}{379} a - \frac{1}{2}$, $\frac{1}{1225352188151557055633766828228348269407201622804720370352119812237208632664197350793842099099100380894767178728815166} a^{19} + \frac{7742661313331672584865244397214250702266078218045328628919141028748037839948246455028023869005189512626744347709}{1225352188151557055633766828228348269407201622804720370352119812237208632664197350793842099099100380894767178728815166} a^{18} + \frac{33701053687416525376795593504113011885320309302974555317218019336479827615663011240369143442619372780207395165032921}{408450729383852351877922276076116089802400540934906790117373270745736210888065783597947366366366793631589059576271722} a^{17} + \frac{14017440294598402389231704070144671977920606540366124491779519323351529427762003954961821940521662989288312566336679}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{16} + \frac{25074869842506649887271012036544505709344502663730850311644744349072180569292920865519145345815609282645365248384223}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{15} + \frac{68044088194798805664912057561470485317275412843979010999004851175797984552435134329862588951298295824889712374776486}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{14} + \frac{147767657516146547238266600104380993814474841325214354235590067695029581578854261864925854026339210785153650430404323}{408450729383852351877922276076116089802400540934906790117373270745736210888065783597947366366366793631589059576271722} a^{13} - \frac{218427943989215243343536638501355442875700895577232095530829358844785370571544337616176640669606548995110939180660479}{1225352188151557055633766828228348269407201622804720370352119812237208632664197350793842099099100380894767178728815166} a^{12} + \frac{305352073707038806779100847084493456946160194855043369592175664348619363129756039224360128825302134348817910146850651}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{11} - \frac{153460054606828776772235637108624280371471704675310133460584454422313785046078501992399431484620398576221205562846799}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{10} - \frac{156018195158663409867543898613236192939312848034771893765318147161781888770678709781915044133145202452642369620210049}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{9} + \frac{80978832938817341157296027794568595999315849731605706793415787396938507867227949249685870753127496801473850415654719}{204225364691926175938961138038058044901200270467453395058686635372868105444032891798973683183183396815794529788135861} a^{8} - \frac{485583072206382449472490089089173045848367511932004522075507004261164254196780164269142691960990483644064851057111315}{1225352188151557055633766828228348269407201622804720370352119812237208632664197350793842099099100380894767178728815166} a^{7} + \frac{513763981000806543742620031340324075634294127278463154316061677165098975489211861369764455851025114959427737036955}{204225364691926175938961138038058044901200270467453395058686635372868105444032891798973683183183396815794529788135861} a^{6} - \frac{179192305794098023356468566515023628254378110345064404623638195036968322682593264255388435306001277785454448655327341}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{5} + \frac{129657052704673916955604663652353376480611433581876595765613427305584985462265431127350677468521475048887756023736145}{1225352188151557055633766828228348269407201622804720370352119812237208632664197350793842099099100380894767178728815166} a^{4} - \frac{242997061112123985755254972324031271396994487572054264131378427621845295333721348483281131845209642234137228378415033}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{3} - \frac{192479411099345751649429380349898382040254736598700226360818183832132682352972525865957083899608059175011844754963147}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a^{2} - \frac{43255585753096542915340451024248632369241368232708077624706810755210616191014089311213566334491986421341067660401457}{612676094075778527816883414114174134703600811402360185176059906118604316332098675396921049549550190447383589364407583} a - \frac{511688304662088820019240534361420130875053953349192064176000299500232243678898938582043307409546691260848824468654}{1616559614975668938830826950169324893677046995784591517614933789231145953382846109226704616225726096167239022069677}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{82}\times C_{5002}$, which has order $52500992$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $C_5:C_4$ |
| Character table for $C_5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 4.0.580330809.1, 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||