Normalized defining polynomial
\( x^{20} - 8 x^{19} + 41 x^{18} - 146 x^{17} + 680 x^{16} - 2698 x^{15} + 12405 x^{14} - 43261 x^{13} + 170951 x^{12} - 525211 x^{11} + 1843943 x^{10} - 4738723 x^{9} + 14408932 x^{8} - 30276269 x^{7} + 80897637 x^{6} - 135622022 x^{5} + 312788154 x^{4} - 389384970 x^{3} + 748934741 x^{2} - 556910277 x + 785567709 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(657121127202216809347230953601268621783321=19^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(779=19\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{779}(1,·)$, $\chi_{779}(324,·)$, $\chi_{779}(455,·)$, $\chi_{779}(778,·)$, $\chi_{779}(590,·)$, $\chi_{779}(400,·)$, $\chi_{779}(18,·)$, $\chi_{779}(666,·)$, $\chi_{779}(476,·)$, $\chi_{779}(474,·)$, $\chi_{779}(286,·)$, $\chi_{779}(37,·)$, $\chi_{779}(742,·)$, $\chi_{779}(113,·)$, $\chi_{779}(493,·)$, $\chi_{779}(303,·)$, $\chi_{779}(305,·)$, $\chi_{779}(761,·)$, $\chi_{779}(379,·)$, $\chi_{779}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} + \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{4}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{8} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} - \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{366777} a^{18} - \frac{6526}{366777} a^{17} - \frac{4364}{366777} a^{16} - \frac{7396}{366777} a^{15} + \frac{10475}{122259} a^{14} - \frac{2608}{40753} a^{13} - \frac{54707}{366777} a^{12} - \frac{16732}{122259} a^{11} - \frac{16352}{122259} a^{10} - \frac{60788}{366777} a^{9} + \frac{169574}{366777} a^{8} - \frac{9401}{366777} a^{7} + \frac{26534}{122259} a^{6} - \frac{48304}{122259} a^{5} - \frac{103090}{366777} a^{4} + \frac{53674}{122259} a^{3} - \frac{115165}{366777} a^{2} - \frac{56582}{122259} a - \frac{479}{40753}$, $\frac{1}{107422706768982348596493340302722519943048761878788836231307} a^{19} + \frac{9013114471953246469114789782827849954276579431273235}{11935856307664705399610371144746946660338751319865426247923} a^{18} + \frac{3494099737323930424614998276836247288591817051037245116492}{107422706768982348596493340302722519943048761878788836231307} a^{17} - \frac{3093133272290633171972437308297078652137620229415359636058}{107422706768982348596493340302722519943048761878788836231307} a^{16} + \frac{931569540717821207940790331356532582801336646230871002983}{35807568922994116198831113434240839981016253959596278743769} a^{15} + \frac{11494601355631052563434479507412636765502016916224056108544}{107422706768982348596493340302722519943048761878788836231307} a^{14} - \frac{7511089230281428906700348594985443776362770505833691431375}{107422706768982348596493340302722519943048761878788836231307} a^{13} + \frac{16962385102127087877445179388084303088188550607685677603358}{107422706768982348596493340302722519943048761878788836231307} a^{12} + \frac{3784850848503143701321473447678644077147031490386360158450}{107422706768982348596493340302722519943048761878788836231307} a^{11} - \frac{9201489168000973896919450881697771361690090050840527267995}{107422706768982348596493340302722519943048761878788836231307} a^{10} - \frac{8280578183797300869691158888572055477944749339727095049618}{107422706768982348596493340302722519943048761878788836231307} a^{9} - \frac{443187787933886195567147873225540898474600455813298185123}{1471543928342223953376621100037294793740393998339573099059} a^{8} + \frac{9858151275952231900064847198322203638501384386370569348957}{35807568922994116198831113434240839981016253959596278743769} a^{7} + \frac{12239047488492430832742844088796057215182923211172192721829}{107422706768982348596493340302722519943048761878788836231307} a^{6} - \frac{34835113357379394360750614419819311437695419834299599173271}{107422706768982348596493340302722519943048761878788836231307} a^{5} + \frac{12648480669827635847191642072076521974325071035036042229848}{107422706768982348596493340302722519943048761878788836231307} a^{4} + \frac{51134636599722945735243241566540259483331872277559368919613}{107422706768982348596493340302722519943048761878788836231307} a^{3} + \frac{35881558138910899644564893190952231910845485965826481165262}{107422706768982348596493340302722519943048761878788836231307} a^{2} - \frac{8839858877031737975184785728350442327860139302180903609332}{35807568922994116198831113434240839981016253959596278743769} a + \frac{4806514792312525160026520134715441297028120807336844481371}{11935856307664705399610371144746946660338751319865426247923}$
Class group and class number
$C_{11}\times C_{173525}$, which has order $1908775$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.636551031 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-779}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-19}, \sqrt{41})\), 5.5.2825761.1, 10.0.810630080370952438139.3, 10.10.327381934393961.1, 10.0.19771465374901278979.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 41 | Data not computed | ||||||