Normalized defining polynomial
\( x^{20} - 10 x^{19} + 75 x^{18} - 390 x^{17} + 1602 x^{16} - 5268 x^{15} + 14090 x^{14} - 30920 x^{13} + 55743 x^{12} - 82466 x^{11} + 99350 x^{10} - 96015 x^{9} + 72432 x^{8} - 40386 x^{7} + 14757 x^{6} - 2239 x^{5} - 461 x^{4} - 84 x^{3} + 336 x^{2} - 147 x + 21 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(654253297161106870378547679969=3^{28}\cdot 7^{6}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{11} + \frac{1}{3} a^{5}$, $\frac{1}{4424737629} a^{18} - \frac{3}{1474912543} a^{17} - \frac{345077830}{4424737629} a^{16} - \frac{63067414}{1474912543} a^{15} + \frac{177722150}{1474912543} a^{14} - \frac{140375543}{1474912543} a^{13} - \frac{840658613}{4424737629} a^{12} + \frac{636632832}{1474912543} a^{11} + \frac{1365593618}{4424737629} a^{10} + \frac{237042511}{1474912543} a^{9} + \frac{246164580}{1474912543} a^{8} - \frac{246739417}{1474912543} a^{7} + \frac{284095381}{4424737629} a^{6} - \frac{641958939}{1474912543} a^{5} + \frac{1735667189}{4424737629} a^{4} - \frac{340344575}{1474912543} a^{3} - \frac{696368617}{1474912543} a^{2} + \frac{98085853}{1474912543} a + \frac{676125672}{1474912543}$, $\frac{1}{4424737629} a^{19} - \frac{345077911}{4424737629} a^{17} - \frac{345077626}{4424737629} a^{16} + \frac{305258815}{4424737629} a^{15} - \frac{15788736}{1474912543} a^{14} - \frac{560324396}{1474912543} a^{13} + \frac{243621151}{4424737629} a^{12} + \frac{855729566}{4424737629} a^{11} + \frac{1202169751}{4424737629} a^{10} + \frac{1238991365}{4424737629} a^{9} + \frac{493829260}{1474912543} a^{8} - \frac{478218706}{4424737629} a^{7} - \frac{843930931}{4424737629} a^{6} + \frac{2101726352}{4424737629} a^{5} + \frac{441919363}{1474912543} a^{4} + \frac{51174449}{113454811} a^{3} - \frac{269581528}{1474912543} a^{2} + \frac{83985806}{1474912543} a + \frac{185480876}{1474912543}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{35095174}{414573} a^{19} - \frac{333404153}{414573} a^{18} + \frac{821808535}{138191} a^{17} - \frac{4151437247}{138191} a^{16} + \frac{49994646140}{414573} a^{15} - \frac{53293611612}{138191} a^{14} + \frac{414538330490}{414573} a^{13} - \frac{292612254389}{138191} a^{12} + \frac{505767948756}{138191} a^{11} - \frac{2135338474280}{414573} a^{10} + \frac{2418782525449}{414573} a^{9} - \frac{719991559532}{138191} a^{8} + \frac{487255237592}{138191} a^{7} - \frac{686313903214}{414573} a^{6} + \frac{58230323547}{138191} a^{5} + \frac{8765386439}{414573} a^{4} - \frac{3930071607}{138191} a^{3} - \frac{2946519135}{138191} a^{2} + \frac{2456270922}{138191} a - \frac{491365827}{138191} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4740283.57365 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.403137.1, 10.0.487558322307.1, 10.8.269619752235771.1, 10.2.808859256707313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.12.22.44 | $x^{12} + 36 x^{11} - 27 x^{10} - 33 x^{9} - 18 x^{8} + 9 x^{7} - 24 x^{6} - 36 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.4.3.2 | $x^{4} - 79$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.4.3.2 | $x^{4} - 79$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |