Normalized defining polynomial
\( x^{20} + 820 x^{18} + 271420 x^{16} + 47070050 x^{14} + 4657110050 x^{12} + 267724300303 x^{10} + 8608657192805 x^{8} + 136377368788730 x^{6} + 743596568481275 x^{4} + 876479585827850 x^{2} + 71877073801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65416827983112661350313274854125976562500000000000000000000=2^{20}\cdot 5^{34}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $872.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(2051,·)$, $\chi_{4100}(2049,·)$, $\chi_{4100}(269,·)$, $\chi_{4100}(2319,·)$, $\chi_{4100}(4099,·)$, $\chi_{4100}(1439,·)$, $\chi_{4100}(1691,·)$, $\chi_{4100}(221,·)$, $\chi_{4100}(1829,·)$, $\chi_{4100}(3489,·)$, $\chi_{4100}(611,·)$, $\chi_{4100}(2661,·)$, $\chi_{4100}(3879,·)$, $\chi_{4100}(2409,·)$, $\chi_{4100}(359,·)$, $\chi_{4100}(3741,·)$, $\chi_{4100}(1781,·)$, $\chi_{4100}(3831,·)$, $\chi_{4100}(2271,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{41} a^{10}$, $\frac{1}{533} a^{11} + \frac{6}{13} a^{9} - \frac{6}{13} a^{7} + \frac{6}{13} a^{5} - \frac{6}{13} a^{3} + \frac{6}{13} a$, $\frac{1}{533} a^{12} - \frac{1}{533} a^{10} - \frac{6}{13} a^{8} + \frac{6}{13} a^{6} - \frac{6}{13} a^{4} + \frac{6}{13} a^{2}$, $\frac{1}{533} a^{13} + \frac{6}{13} a$, $\frac{1}{533} a^{14} + \frac{6}{13} a^{2}$, $\frac{1}{533} a^{15} + \frac{6}{13} a^{3}$, $\frac{1}{1918267} a^{16} - \frac{1581}{1918267} a^{14} + \frac{231}{1918267} a^{12} + \frac{4774}{1918267} a^{10} + \frac{6934}{46787} a^{8} + \frac{3752}{46787} a^{6} + \frac{12010}{46787} a^{4} - \frac{963}{46787} a^{2} - \frac{1598}{3599}$, $\frac{1}{1918267} a^{17} - \frac{1581}{1918267} a^{15} + \frac{231}{1918267} a^{13} + \frac{1175}{1918267} a^{11} - \frac{14660}{46787} a^{9} - \frac{21441}{46787} a^{7} - \frac{9584}{46787} a^{5} + \frac{1587}{3599} a^{3} + \frac{4419}{46787} a$, $\frac{1}{99590878139500166828121177665554528864471728992392477} a^{18} + \frac{18048620669478023562316063699490665262291433356}{99590878139500166828121177665554528864471728992392477} a^{16} + \frac{70058080441444783552672260935810376324916955437576}{99590878139500166828121177665554528864471728992392477} a^{14} - \frac{78648442226569643759495872772463096422674723468665}{99590878139500166828121177665554528864471728992392477} a^{12} + \frac{1156303926339576490945798636763234663141104159097977}{99590878139500166828121177665554528864471728992392477} a^{10} - \frac{280083529394435737156559713142637092851798398967915}{2429045808280491873856614089403768996694432414448597} a^{8} - \frac{460982175364495736289323328841950687942828038252851}{2429045808280491873856614089403768996694432414448597} a^{6} - \frac{830743296913750280330725186681571270289801050216843}{2429045808280491873856614089403768996694432414448597} a^{4} + \frac{248706318293847063448536486850857084724701781171169}{2429045808280491873856614089403768996694432414448597} a^{2} - \frac{5146749771944177257359562281885109285513066014005}{14373052120002910496192982777537094654996641505613}$, $\frac{1}{2053862679870911940496343046996731048772000467010110053171} a^{19} - \frac{9630816761674030947863356186773144155168298320830}{50094211704168583914544952365773928018829279683173415931} a^{17} - \frac{20145108072263937485819361336821741240410298599982696}{50094211704168583914544952365773928018829279683173415931} a^{15} + \frac{466631127184546223605718276863463524405901932840728}{50094211704168583914544952365773928018829279683173415931} a^{13} + \frac{18151693081493924935859258210285007867874221799031687}{50094211704168583914544952365773928018829279683173415931} a^{11} - \frac{21991005729539652142831925915675592217615268046939482261}{50094211704168583914544952365773928018829279683173415931} a^{9} - \frac{106590048066523432782144514498161221668574067160134316}{1221810041565087412549876886970095805337299504467644291} a^{7} - \frac{107989805701721946750715842180931375561859402035278173}{1221810041565087412549876886970095805337299504467644291} a^{5} - \frac{246033167331825009589078664017534902021110165874722400}{1221810041565087412549876886970095805337299504467644291} a^{3} + \frac{43812002593310968010481778903470309728256383932403697}{93985387812699031734605914382315061949023038805203407} a$
Class group and class number
$C_{5}\times C_{10}\times C_{278966420}$, which has order $13948321000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1610923731792264272750}{13030038445900174051808492311005563} a^{19} - \frac{32246229925055846933725}{317805815753662781751426641731843} a^{17} - \frac{10685200070973460451359107}{317805815753662781751426641731843} a^{15} - \frac{1855544680213243356161085230}{317805815753662781751426641731843} a^{13} - \frac{183875161386985217580677234380}{317805815753662781751426641731843} a^{11} - \frac{10588204230708320836522956371550}{317805815753662781751426641731843} a^{9} - \frac{8317870723519443856830866339375}{7751361359845433701254308334923} a^{7} - \frac{10152111187914316379890486389383}{596258566141956438558023718071} a^{5} - \frac{720704083314924817645281912977695}{7751361359845433701254308334923} a^{3} - \frac{855989765403458592357095935105395}{7751361359845433701254308334923} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 793721345751.2314 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.4 | $x^{10} - 5 x^{8} + 105$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.4 | $x^{10} - 5 x^{8} + 105$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $41$ | 41.10.9.3 | $x^{10} - 53136$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.3 | $x^{10} - 53136$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |