Normalized defining polynomial
\( x^{20} + 820 x^{18} + 285770 x^{16} + 55136800 x^{14} + 6428606275 x^{12} + 464056945403 x^{10} + 20447120999480 x^{8} + 524077724148005 x^{6} + 7168969150008775 x^{4} + 44657013077067075 x^{2} + 78262133223197401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65416827983112661350313274854125976562500000000000000000000=2^{20}\cdot 5^{34}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $872.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(3009,·)$, $\chi_{4100}(4099,·)$, $\chi_{4100}(2951,·)$, $\chi_{4100}(1289,·)$, $\chi_{4100}(961,·)$, $\chi_{4100}(1281,·)$, $\chi_{4100}(3139,·)$, $\chi_{4100}(1041,·)$, $\chi_{4100}(1091,·)$, $\chi_{4100}(3059,·)$, $\chi_{4100}(4069,·)$, $\chi_{4100}(529,·)$, $\chi_{4100}(31,·)$, $\chi_{4100}(3079,·)$, $\chi_{4100}(1149,·)$, $\chi_{4100}(3571,·)$, $\chi_{4100}(2819,·)$, $\chi_{4100}(2811,·)$, $\chi_{4100}(1021,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} + \frac{1}{11} a^{4} - \frac{4}{11} a^{2} + \frac{2}{11}$, $\frac{1}{11} a^{7} + \frac{1}{11} a^{5} - \frac{4}{11} a^{3} + \frac{2}{11} a$, $\frac{1}{11} a^{8} - \frac{5}{11} a^{4} - \frac{5}{11} a^{2} - \frac{2}{11}$, $\frac{1}{11} a^{9} - \frac{5}{11} a^{5} - \frac{5}{11} a^{3} - \frac{2}{11} a$, $\frac{1}{131570681} a^{10} + \frac{10}{3209041} a^{8} + \frac{1435}{3209041} a^{6} + \frac{84050}{3209041} a^{4} - \frac{1486016}{3209041} a^{2} - \frac{313561}{3209041}$, $\frac{1}{2499842939} a^{11} + \frac{2333858}{60971779} a^{9} + \frac{2043552}{60971779} a^{7} + \frac{12920214}{60971779} a^{5} + \frac{7557645}{60971779} a^{3} - \frac{897023}{60971779} a$, $\frac{1}{2499842939} a^{12} - \frac{2}{2499842939} a^{10} - \frac{1461340}{60971779} a^{8} - \frac{2257556}{60971779} a^{6} - \frac{1690358}{60971779} a^{4} + \frac{22920142}{60971779} a^{2} + \frac{688326}{3209041}$, $\frac{1}{2499842939} a^{13} - \frac{2336513}{60971779} a^{9} + \frac{96292}{3209041} a^{7} - \frac{9107264}{60971779} a^{5} + \frac{4778098}{60971779} a^{3} + \frac{22369926}{60971779} a$, $\frac{1}{102493560499} a^{14} - \frac{7}{2499842939} a^{10} - \frac{91374}{3209041} a^{8} + \frac{973638}{60971779} a^{6} - \frac{716258241}{2499842939} a^{4} + \frac{10927828}{60971779} a^{2} + \frac{861435}{3209041}$, $\frac{1}{897741096410741} a^{15} + \frac{15}{21896124302701} a^{13} + \frac{90}{534051812261} a^{11} + \frac{1025}{48550164751} a^{9} + \frac{756450}{534051812261} a^{7} + \frac{2879986299144}{21896124302701} a^{5} - \frac{24412517077}{534051812261} a^{3} + \frac{52708399240}{534051812261} a$, $\frac{1}{9875152060518151} a^{16} - \frac{16903}{9875152060518151} a^{14} + \frac{47485}{240857367329711} a^{12} - \frac{45565}{21896124302701} a^{10} + \frac{112054985051}{5874569934871} a^{8} + \frac{2049391455852}{240857367329711} a^{6} - \frac{64599156647314}{240857367329711} a^{4} + \frac{698182338108}{5874569934871} a^{2} - \frac{6610459}{35299451}$, $\frac{1}{404881234481244191} a^{17} - \frac{5}{9875152060518151} a^{15} + \frac{26067}{240857367329711} a^{13} - \frac{2499}{21896124302701} a^{11} - \frac{28177875014}{5874569934871} a^{9} + \frac{56723534238518}{9875152060518151} a^{7} + \frac{104882035971076}{240857367329711} a^{5} - \frac{1913531055103}{5874569934871} a^{3} + \frac{1104373899657}{5874569934871} a$, $\frac{1}{404881234481244191} a^{18} + \frac{20742}{9875152060518151} a^{14} + \frac{17238}{240857367329711} a^{12} - \frac{825926}{240857367329711} a^{10} + \frac{362867473943537}{9875152060518151} a^{8} - \frac{9211383168890}{240857367329711} a^{6} - \frac{89101097523748}{240857367329711} a^{4} + \frac{504259261093}{5874569934871} a^{2} - \frac{7342721}{35299451}$, $\frac{1}{404881234481244191} a^{19} - \frac{4}{9875152060518151} a^{15} - \frac{4905}{240857367329711} a^{13} - \frac{10419}{240857367329711} a^{11} + \frac{11617439148615}{519744845290429} a^{9} - \frac{8974415432687}{240857367329711} a^{7} + \frac{110484517092849}{240857367329711} a^{5} + \frac{1467274269972}{5874569934871} a^{3} + \frac{1246861973630}{5874569934871} a$
Class group and class number
$C_{110}\times C_{603188080}$, which has order $66350688800$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 298173173992.418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.5 | $x^{10} - 5 x^{8} + 55$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.5 | $x^{10} - 5 x^{8} + 55$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $41$ | 41.10.9.5 | $x^{10} - 68864256$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.5 | $x^{10} - 68864256$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |