Normalized defining polynomial
\( x^{20} + 820 x^{18} + 285770 x^{16} + 55136800 x^{14} + 6428606275 x^{12} + 463900095803 x^{10} + 20382812663480 x^{8} + 514849477932005 x^{6} + 6628457585928775 x^{4} + 33576526013427075 x^{2} + 21574938539041801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65416827983112661350313274854125976562500000000000000000000=2^{20}\cdot 5^{34}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $872.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(4099,·)$, $\chi_{4100}(2951,·)$, $\chi_{4100}(1609,·)$, $\chi_{4100}(2319,·)$, $\chi_{4100}(469,·)$, $\chi_{4100}(1111,·)$, $\chi_{4100}(271,·)$, $\chi_{4100}(221,·)$, $\chi_{4100}(1439,·)$, $\chi_{4100}(3741,·)$, $\chi_{4100}(2661,·)$, $\chi_{4100}(3879,·)$, $\chi_{4100}(359,·)$, $\chi_{4100}(2989,·)$, $\chi_{4100}(3631,·)$, $\chi_{4100}(3829,·)$, $\chi_{4100}(2491,·)$, $\chi_{4100}(1149,·)$, $\chi_{4100}(1781,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{167094311} a^{10} + \frac{10}{4075471} a^{8} + \frac{1435}{4075471} a^{6} + \frac{84050}{4075471} a^{4} + \frac{1723025}{4075471} a^{2} - \frac{316965}{4075471}$, $\frac{1}{167094311} a^{11} + \frac{10}{4075471} a^{9} + \frac{1435}{4075471} a^{7} + \frac{84050}{4075471} a^{5} + \frac{1723025}{4075471} a^{3} - \frac{316965}{4075471} a$, $\frac{1}{167094311} a^{12} - \frac{2665}{4075471} a^{8} - \frac{504300}{4075471} a^{6} - \frac{133707}{4075471} a^{4} - \frac{1700732}{4075471} a^{2} - \frac{459422}{4075471}$, $\frac{1}{167094311} a^{13} - \frac{2665}{4075471} a^{9} - \frac{504300}{4075471} a^{7} - \frac{133707}{4075471} a^{5} - \frac{1700732}{4075471} a^{3} - \frac{459422}{4075471} a$, $\frac{1}{6850866751} a^{14} + \frac{14350}{4075471} a^{8} - \frac{1049671}{4075471} a^{6} - \frac{65221181}{167094311} a^{4} + \frac{1975458}{4075471} a^{2} - \frac{1089228}{4075471}$, $\frac{1}{598621885835629} a^{15} + \frac{15}{14600533800869} a^{13} + \frac{90}{356110580509} a^{11} + \frac{11275}{356110580509} a^{9} + \frac{756450}{356110580509} a^{7} + \frac{2421567155201}{14600533800869} a^{5} - \frac{4869043051}{356110580509} a^{3} + \frac{141997790293}{356110580509} a$, $\frac{1}{20192114831121601799} a^{16} - \frac{179650609}{20192114831121601799} a^{14} + \frac{432267603}{492490605637112239} a^{12} - \frac{1261290485}{492490605637112239} a^{10} - \frac{3742595163695}{12011965991149079} a^{8} + \frac{149896056851195791}{492490605637112239} a^{6} + \frac{175796181518942884}{492490605637112239} a^{4} - \frac{128394407071870}{12011965991149079} a^{2} - \frac{34641986931}{137469712301}$, $\frac{1}{827876708075985673759} a^{17} + \frac{17}{20192114831121601799} a^{15} - \frac{1433364996}{492490605637112239} a^{13} - \frac{611896482}{492490605637112239} a^{11} + \frac{3813798923770}{12011965991149079} a^{9} + \frac{409841927260381518}{20192114831121601799} a^{7} + \frac{235227934013768503}{492490605637112239} a^{5} - \frac{52518608222035}{203592643917781} a^{3} - \frac{890758256869321}{12011965991149079} a$, $\frac{1}{827876708075985673759} a^{18} + \frac{286335448}{20192114831121601799} a^{14} + \frac{881697414}{492490605637112239} a^{12} - \frac{840647125}{492490605637112239} a^{10} - \frac{13573611477423308}{342239234425789861} a^{8} + \frac{175254542085688246}{492490605637112239} a^{6} - \frac{57860786434179481}{492490605637112239} a^{4} + \frac{4717336918260338}{12011965991149079} a^{2} - \frac{62230930337}{137469712301}$, $\frac{1}{827876708075985673759} a^{19} - \frac{171}{492490605637112239} a^{15} - \frac{7640302}{8073616485854299} a^{13} + \frac{16231116}{12011965991149079} a^{11} - \frac{801687248059962072}{20192114831121601799} a^{9} + \frac{2748963005035221}{8073616485854299} a^{7} + \frac{3759161395581446}{12011965991149079} a^{5} - \frac{2138861504510518}{12011965991149079} a^{3} - \frac{5332057106820576}{12011965991149079} a$
Class group and class number
$C_{10}\times C_{1360841680}$, which has order $13608416800$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134402570544.74945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.4 | $x^{10} - 5 x^{8} + 105$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.4 | $x^{10} - 5 x^{8} + 105$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $41$ | 41.10.9.3 | $x^{10} - 53136$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.3 | $x^{10} - 53136$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |