Normalized defining polynomial
\( x^{20} + 820 x^{18} + 277570 x^{16} + 50790800 x^{14} + 5529189275 x^{12} + 370384365328 x^{10} + 15206844638930 x^{8} + 367779268319780 x^{6} + 4775088327115025 x^{4} + 26398034793363200 x^{2} + 17023928122802176 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65416827983112661350313274854125976562500000000000000000000=2^{20}\cdot 5^{34}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $872.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(4099,·)$, $\chi_{4100}(2049,·)$, $\chi_{4100}(1419,·)$, $\chi_{4100}(461,·)$, $\chi_{4100}(2511,·)$, $\chi_{4100}(209,·)$, $\chi_{4100}(2259,·)$, $\chi_{4100}(1371,·)$, $\chi_{4100}(3469,·)$, $\chi_{4100}(3421,·)$, $\chi_{4100}(2051,·)$, $\chi_{4100}(679,·)$, $\chi_{4100}(2729,·)$, $\chi_{4100}(1841,·)$, $\chi_{4100}(3891,·)$, $\chi_{4100}(1589,·)$, $\chi_{4100}(3639,·)$, $\chi_{4100}(631,·)$, $\chi_{4100}(2681,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{5} + \frac{1}{8} a^{3} - \frac{3}{16} a$, $\frac{1}{1312} a^{10} + \frac{1}{16} a^{8} - \frac{1}{32} a^{6} - \frac{3}{16} a^{4} + \frac{1}{32} a^{2}$, $\frac{1}{1312} a^{11} + \frac{3}{32} a^{7} - \frac{1}{8} a^{5} - \frac{3}{32} a^{3} + \frac{3}{16} a$, $\frac{1}{1312} a^{12} + \frac{3}{32} a^{8} - \frac{1}{8} a^{6} - \frac{3}{32} a^{4} + \frac{3}{16} a^{2}$, $\frac{1}{40672} a^{13} - \frac{5}{40672} a^{11} - \frac{11}{992} a^{9} - \frac{23}{992} a^{7} - \frac{33}{992} a^{5} - \frac{199}{992} a^{3} + \frac{51}{248} a$, $\frac{1}{2765696} a^{14} - \frac{315}{2765696} a^{12} - \frac{427}{1382848} a^{10} + \frac{1217}{67456} a^{8} - \frac{1303}{33728} a^{6} - \frac{22395}{67456} a^{4} - \frac{8259}{67456} a^{2} + \frac{1}{17}$, $\frac{1}{1109044096} a^{15} + \frac{11245}{1109044096} a^{13} + \frac{13887}{554522048} a^{11} + \frac{409489}{27049856} a^{9} + \frac{277871}{13524928} a^{7} - \frac{1470523}{27049856} a^{5} + \frac{4152321}{27049856} a^{3} + \frac{781619}{1690616} a$, $\frac{1}{107577277312} a^{16} + \frac{803}{6328075136} a^{14} + \frac{237883}{1582018784} a^{12} - \frac{1967543}{6328075136} a^{10} + \frac{1567815}{38585824} a^{8} + \frac{17097245}{154343296} a^{6} - \frac{1234681}{154343296} a^{4} - \frac{31070367}{77171648} a^{2} + \frac{91}{1649}$, $\frac{1}{107577277312} a^{17} - \frac{13}{53788638656} a^{15} - \frac{82029}{107577277312} a^{13} - \frac{35078801}{107577277312} a^{11} + \frac{44651991}{2623836032} a^{9} + \frac{267683371}{2623836032} a^{7} + \frac{150746711}{1311918016} a^{5} + \frac{466540017}{2623836032} a^{3} - \frac{758465}{2411614} a$, $\frac{1}{386081159048390234393068072662884665488128} a^{18} + \frac{351584431051015808888984231059}{193040579524195117196534036331442332744064} a^{16} - \frac{5617104959345445806227726268417937}{48260144881048779299133509082860583186016} a^{14} - \frac{388606593843667853119765702702894325}{1556778867130605783843016422027760747936} a^{12} + \frac{66278790765295705653527208459163842573}{386081159048390234393068072662884665488128} a^{10} - \frac{75570081167272125636088025938754385795}{1177076704415823885344719733728306906976} a^{8} + \frac{66763402115663391334052363190193256735}{2354153408831647770689439467456613813952} a^{6} + \frac{1055866978958310017462209946285291134385}{4708306817663295541378878934913227627904} a^{4} + \frac{46631378056885998405701607059933608077}{553918449136858298985750462930967956224} a^{2} + \frac{1079290973676929778419791185713816}{2959025582253599583060292146972053}$, $\frac{1}{253269240335743993761852655666852340560211968} a^{19} + \frac{945272543327869863039317970365}{1544324636193560937572272290651538661952512} a^{17} - \frac{737038793675336968999918416915751}{3088649272387121875144544581303077323905024} a^{15} - \frac{2041694972090199377729986466817753397}{386081159048390234393068072662884665488128} a^{13} + \frac{764055624658817630476166679794293218883}{6177298544774243750289089162606154647810048} a^{11} + \frac{6630938812571772072061175842508498473371}{386081159048390234393068072662884665488128} a^{9} + \frac{7789720388944311200921273490686739033513}{75332909082612728662062062958611642046464} a^{7} - \frac{2145692510435739596262007295339832996855}{37666454541306364331031031479305821023232} a^{5} - \frac{15266822471826362308060477594729911493023}{150665818165225457324124125917223284092928} a^{3} + \frac{90772335271982815333815361876363710383}{294269176103955971336179933432076726744} a$
Class group and class number
$C_{2}\times C_{4}\times C_{40}\times C_{40}\times C_{40}\times C_{31240}$, which has order $15994880000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{216169635375}{1309349081739486928880021504} a^{19} + \frac{1038941328875}{7983835864265164200487936} a^{17} + \frac{21337701056937}{515086184791300916160512} a^{15} + \frac{13726572913295135}{1995958966066291050121984} a^{13} + \frac{20413739980524491885}{31935343457060656801951744} a^{11} + \frac{65318491252163753975}{1995958966066291050121984} a^{9} + \frac{313715328048057618775}{389455408012934839048192} a^{7} + \frac{820965983671091954167}{194727704006467419524096} a^{5} - \frac{104059068869195301423185}{778910816025869678096384} a^{3} - \frac{480978271369834228695}{380327546887631678758} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3058814187510.6895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $5$ | 5.10.17.3 | $x^{10} - 5 x^{8} + 30$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.3 | $x^{10} - 5 x^{8} + 30$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $41$ | 41.10.9.4 | $x^{10} - 1912896$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.4 | $x^{10} - 1912896$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |