Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 5 x^{16} + 13 x^{15} + 2 x^{14} + 4 x^{13} - 32 x^{12} - 4 x^{11} + 154 x^{10} - 23 x^{9} + 157 x^{8} - 298 x^{7} + 29 x^{6} + 527 x^{5} + 374 x^{4} + 114 x^{3} - 69 x^{2} + 221 x + 289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6522683188340621511158049=3^{10}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{45} a^{16} + \frac{1}{45} a^{15} + \frac{1}{45} a^{14} - \frac{1}{9} a^{13} - \frac{1}{45} a^{12} + \frac{4}{45} a^{11} + \frac{16}{45} a^{9} + \frac{17}{45} a^{8} + \frac{11}{45} a^{7} - \frac{1}{3} a^{6} + \frac{14}{45} a^{5} - \frac{16}{45} a^{4} + \frac{4}{9} a^{3} - \frac{14}{45} a^{2} - \frac{4}{45} a + \frac{16}{45}$, $\frac{1}{45} a^{17} - \frac{2}{15} a^{14} + \frac{4}{45} a^{13} + \frac{1}{9} a^{12} - \frac{4}{45} a^{11} + \frac{16}{45} a^{10} + \frac{1}{45} a^{9} - \frac{2}{15} a^{8} + \frac{19}{45} a^{7} - \frac{16}{45} a^{6} + \frac{1}{3} a^{5} - \frac{1}{5} a^{4} + \frac{11}{45} a^{3} + \frac{2}{9} a^{2} + \frac{4}{9} a - \frac{16}{45}$, $\frac{1}{5433435} a^{18} - \frac{6982}{1086687} a^{17} - \frac{16426}{5433435} a^{16} + \frac{199748}{5433435} a^{15} - \frac{295814}{1811145} a^{14} + \frac{66973}{1086687} a^{13} - \frac{435073}{5433435} a^{12} + \frac{243587}{5433435} a^{11} + \frac{736766}{5433435} a^{10} - \frac{804004}{1811145} a^{9} + \frac{375887}{5433435} a^{8} + \frac{2400928}{5433435} a^{7} + \frac{325072}{1086687} a^{6} + \frac{1297117}{5433435} a^{5} + \frac{554899}{1811145} a^{4} + \frac{82934}{1086687} a^{3} + \frac{1231754}{5433435} a^{2} - \frac{1044157}{5433435} a - \frac{1867721}{5433435}$, $\frac{1}{21086257422072646125} a^{19} - \frac{166639959328}{7028752474024215375} a^{18} + \frac{178521927588033866}{21086257422072646125} a^{17} + \frac{28925693206682851}{3012322488867520875} a^{16} - \frac{1419462123277990819}{21086257422072646125} a^{15} + \frac{101579160858875507}{7028752474024215375} a^{14} + \frac{689547223497981601}{4217251484414529225} a^{13} - \frac{907375493434428281}{21086257422072646125} a^{12} + \frac{155722857842804873}{468583498268281025} a^{11} + \frac{6819975357244086251}{21086257422072646125} a^{10} - \frac{2791670686011128}{21086257422072646125} a^{9} + \frac{8418570172380173173}{21086257422072646125} a^{8} + \frac{10371148833699573721}{21086257422072646125} a^{7} - \frac{340082129578931989}{4217251484414529225} a^{6} - \frac{8437641218968160231}{21086257422072646125} a^{5} - \frac{40473172409743652}{137818675961259125} a^{4} + \frac{401050030786599148}{1240368083651332125} a^{3} + \frac{2011284788530884152}{21086257422072646125} a^{2} + \frac{168050944547226952}{1004107496289173625} a + \frac{343656732878799931}{1240368083651332125}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19433228716}{135829178001125} a^{19} - \frac{582376012693}{407487534003375} a^{18} + \frac{1596854478707}{407487534003375} a^{17} - \frac{156100842241}{19404168285875} a^{16} + \frac{6889488106112}{407487534003375} a^{15} - \frac{9217727191583}{407487534003375} a^{14} - \frac{356270378998}{81497506800675} a^{13} - \frac{2302704999187}{407487534003375} a^{12} - \frac{538155739272}{27165835600225} a^{11} + \frac{24786995375777}{407487534003375} a^{10} - \frac{17196748524656}{407487534003375} a^{9} - \frac{79764115586129}{407487534003375} a^{8} + \frac{21070046628439}{135829178001125} a^{7} - \frac{14061767208451}{27165835600225} a^{6} + \frac{374827088304538}{407487534003375} a^{5} - \frac{16340035415111}{23969854941375} a^{4} - \frac{5267986694654}{23969854941375} a^{3} - \frac{61145739121307}{135829178001125} a^{2} - \frac{31393687429363}{58212504857625} a + \frac{5047516768479}{7989951647125} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56202.6193366 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-303}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{101}) \), \(\Q(\sqrt{-3}, \sqrt{101})\), 5.1.91809.1 x5, 10.0.2553954421743.1, 10.0.25286677443.1 x5, 10.2.851318140581.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $101$ | 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |