Normalized defining polynomial
\( x^{20} + 8 x^{18} + 60 x^{16} - 132 x^{14} - 696 x^{12} - 558 x^{10} + 6420 x^{8} + 4512 x^{6} + 2316 x^{4} + 560 x^{2} + 100 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(649983722677862400000000000000=2^{38}\cdot 3^{18}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{15} - \frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{7926} a^{16} - \frac{625}{7926} a^{14} + \frac{140}{3963} a^{12} + \frac{371}{7926} a^{10} - \frac{352}{1321} a^{8} - \frac{20}{3963} a^{6} - \frac{636}{1321} a^{4} + \frac{578}{3963} a^{2} + \frac{91}{1321}$, $\frac{1}{7926} a^{17} - \frac{625}{7926} a^{15} + \frac{140}{3963} a^{13} + \frac{371}{7926} a^{11} - \frac{352}{1321} a^{9} - \frac{20}{3963} a^{7} - \frac{636}{1321} a^{5} + \frac{578}{3963} a^{3} + \frac{91}{1321} a$, $\frac{1}{44456283394290} a^{18} - \frac{276786273}{4939587043810} a^{16} + \frac{54185275049}{2963752226286} a^{14} + \frac{636267212681}{14818761131430} a^{12} + \frac{915478703}{14818761131430} a^{10} + \frac{3617280649462}{7409380565715} a^{8} - \frac{50248973621}{1481876113143} a^{6} + \frac{1924042816967}{7409380565715} a^{4} + \frac{831133848192}{2469793521905} a^{2} - \frac{18071890552}{4445628339429}$, $\frac{1}{44456283394290} a^{19} - \frac{276786273}{4939587043810} a^{17} + \frac{54185275049}{2963752226286} a^{15} + \frac{636267212681}{14818761131430} a^{13} + \frac{915478703}{14818761131430} a^{11} + \frac{3617280649462}{7409380565715} a^{9} - \frac{50248973621}{1481876113143} a^{7} + \frac{1924042816967}{7409380565715} a^{5} + \frac{831133848192}{2469793521905} a^{3} - \frac{18071890552}{4445628339429} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4535638}{1869639305} a^{18} - \frac{35455179}{1869639305} a^{16} - \frac{159657968}{1121783583} a^{14} + \frac{643835466}{1869639305} a^{12} + \frac{6024824001}{3739278610} a^{10} + \frac{6110033012}{5608917915} a^{8} - \frac{5840071692}{373927861} a^{6} - \frac{15073712781}{1869639305} a^{4} - \frac{31366075324}{5608917915} a^{2} - \frac{131163595}{373927861} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9660809.80023597 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-3}, \sqrt{10})\), 5.1.162000.1, 10.2.268738560000000.13, 10.0.78732000000.1, 10.0.806215680000000.16 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |