Normalized defining polynomial
\( x^{20} + 12 x^{18} + 48 x^{16} + 60 x^{14} + 12 x^{12} + 174 x^{10} + 612 x^{8} + 720 x^{6} + 288 x^{4} - 288 x^{2} + 576 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(649983722677862400000000000000=2^{38}\cdot 3^{18}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10}$, $\frac{1}{6} a^{11}$, $\frac{1}{12} a^{12} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{14} - \frac{1}{24} a^{12} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2}$, $\frac{1}{96} a^{15} - \frac{1}{48} a^{13} + \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{16} a^{5} - \frac{1}{4} a$, $\frac{1}{3648} a^{16} - \frac{3}{304} a^{14} - \frac{23}{912} a^{12} - \frac{5}{912} a^{10} + \frac{13}{304} a^{8} - \frac{59}{608} a^{6} - \frac{17}{304} a^{4} + \frac{23}{152} a^{2} + \frac{21}{76}$, $\frac{1}{3648} a^{17} + \frac{1}{1824} a^{15} - \frac{1}{228} a^{13} - \frac{5}{912} a^{11} + \frac{51}{304} a^{9} + \frac{169}{608} a^{7} - \frac{75}{152} a^{5} + \frac{61}{152} a^{3} - \frac{9}{19} a$, $\frac{1}{56281344} a^{18} + \frac{149}{1340032} a^{16} + \frac{32841}{4690112} a^{14} - \frac{67509}{4690112} a^{12} + \frac{174073}{14070336} a^{10} + \frac{217697}{9380224} a^{8} - \frac{685493}{2345056} a^{6} - \frac{245663}{586264} a^{4} - \frac{1663}{83752} a^{2} + \frac{280179}{586264}$, $\frac{1}{168844032} a^{19} + \frac{149}{4020096} a^{17} + \frac{10947}{4690112} a^{15} - \frac{22503}{4690112} a^{13} - \frac{723661}{14070336} a^{11} - \frac{9162527}{28140672} a^{9} - \frac{1010183}{2345056} a^{7} - \frac{277309}{586264} a^{5} + \frac{27363}{83752} a^{3} + \frac{93393}{586264} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9660809.80023597 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-6}, \sqrt{10})\), 5.1.162000.1, 10.2.268738560000000.13, 10.0.393660000000.1, 10.0.161243136000000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |