Normalized defining polynomial
\( x^{20} - 2 x^{19} + 105 x^{18} - 192 x^{17} + 5601 x^{16} - 8954 x^{15} + 196958 x^{14} - 266010 x^{13} + 4979818 x^{12} - 5492826 x^{11} + 93261249 x^{10} - 80363506 x^{9} + 1294117823 x^{8} - 818308334 x^{7} + 13002301543 x^{6} - 5511867932 x^{5} + 89758244598 x^{4} - 22085242938 x^{3} + 381913016562 x^{2} - 40054162896 x + 757112259541 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64865899108976789905836192655360000000000=2^{20}\cdot 5^{10}\cdot 11^{16}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2860=2^{2}\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2860}(1,·)$, $\chi_{2860}(1871,·)$, $\chi_{2860}(1611,·)$, $\chi_{2860}(1351,·)$, $\chi_{2860}(521,·)$, $\chi_{2860}(779,·)$, $\chi_{2860}(1039,·)$, $\chi_{2860}(1299,·)$, $\chi_{2860}(1301,·)$, $\chi_{2860}(2391,·)$, $\chi_{2860}(729,·)$, $\chi_{2860}(1819,·)$, $\chi_{2860}(1769,·)$, $\chi_{2860}(2341,·)$, $\chi_{2860}(2599,·)$, $\chi_{2860}(2601,·)$, $\chi_{2860}(2029,·)$, $\chi_{2860}(2289,·)$, $\chi_{2860}(311,·)$, $\chi_{2860}(2809,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} - \frac{131}{331} a^{17} - \frac{161}{331} a^{16} - \frac{144}{331} a^{15} + \frac{60}{331} a^{14} + \frac{39}{331} a^{13} + \frac{119}{331} a^{12} - \frac{164}{331} a^{11} - \frac{139}{331} a^{10} + \frac{81}{331} a^{9} - \frac{88}{331} a^{8} - \frac{83}{331} a^{7} + \frac{123}{331} a^{6} - \frac{112}{331} a^{5} - \frac{37}{331} a^{4} - \frac{153}{331} a^{3} - \frac{73}{331} a^{2} + \frac{130}{331} a - \frac{8}{331}$, $\frac{1}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{19} + \frac{950043061168592580829701708067346021813753309439410773373936659422160137378537}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{18} - \frac{1215522733414123006974799311753707696679245947712471937703971161860596765908760021}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{17} - \frac{855452404093077796909945018066190099421204004893237726705729009294858353409631309}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{16} - \frac{2493514083329159864223700859525611450129081597834834548977209748762303653529106409}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{15} + \frac{1177719673850496716755751160335109537946840712355990038487781594263203500411198659}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{14} - \frac{1286850201045848472717169723555208997371892330153024670358099165014114501208153757}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{13} + \frac{870298318921828416628892048617599264607857082687550292453786549997780327106102788}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{12} + \frac{2347860678955912151872444606264258839452277411899239670808274951199685752565745415}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{11} - \frac{1168089838155776207461320002227863216314432429307886656055165610661175629936878704}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{10} + \frac{2250232403146359846808794034651119534982650627725940558601360244221812064170595260}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{9} - \frac{831699687338108018823683005394450465556024638928583718550748043854778047407498296}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{8} - \frac{156187938109694594556465905306593575148518645797898280532002006379166967315170613}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{7} - \frac{2688507043921891970076621297710670127917184623860750693735319179093938376900235940}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{6} - \frac{1608299519363974258117655920176635314135577482162093044769850519763717936760085891}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{5} - \frac{2259963820508046705236950718367638712167042780984815368704443818164526079548955381}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{4} + \frac{10619433477886266024801106970445969686818945513374632472195720508143568770235891}{127097462008011211243607559435317915687938659192624775934625443454861672326664209} a^{3} - \frac{1007177725456833740038664916340728533324185454257432447263321076563993484319307434}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a^{2} + \frac{1374665969608738533989101362594644021798842436906284732958118718049728593516195025}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987} a + \frac{1138233002921702215097909122037783333288704607694807579743415643871246874336126030}{5465190866344482083475125055718670374581362345282865365188894068559051910046560987}$
Class group and class number
$C_{5}\times C_{968440}$, which has order $4842200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.5991815038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-65}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{5}, \sqrt{-13})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.254687846410025600000.1, 10.0.81500110851208192.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 13 | Data not computed | ||||||