Normalized defining polynomial
\( x^{20} - 7 x^{19} + 26 x^{18} - 63 x^{17} + 102 x^{16} - 83 x^{15} - 72 x^{14} + 381 x^{13} - 463 x^{12} + 72 x^{11} + 1550 x^{10} - 4118 x^{9} + 5799 x^{8} - 5627 x^{7} + 4748 x^{6} - 2617 x^{5} + 1252 x^{4} - 451 x^{3} + 88 x^{2} - 27 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6484356150250000000000000000=2^{16}\cdot 5^{18}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{30} a^{16} + \frac{1}{15} a^{15} + \frac{1}{10} a^{14} - \frac{2}{15} a^{13} + \frac{1}{6} a^{12} + \frac{1}{5} a^{11} - \frac{7}{30} a^{10} + \frac{1}{30} a^{9} + \frac{2}{5} a^{8} - \frac{1}{2} a^{7} - \frac{1}{30} a^{6} - \frac{1}{15} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{30} a - \frac{1}{5}$, $\frac{1}{30} a^{17} - \frac{1}{30} a^{15} + \frac{1}{6} a^{14} - \frac{1}{15} a^{13} - \frac{2}{15} a^{12} - \frac{2}{15} a^{11} - \frac{1}{2} a^{10} - \frac{1}{6} a^{9} + \frac{1}{5} a^{8} - \frac{1}{30} a^{7} - \frac{13}{30} a^{6} + \frac{13}{30} a^{5} - \frac{1}{6} a^{4} - \frac{2}{5} a^{3} - \frac{1}{30} a^{2} + \frac{11}{30} a - \frac{1}{10}$, $\frac{1}{4950} a^{18} - \frac{1}{99} a^{17} + \frac{1}{99} a^{16} + \frac{137}{4950} a^{15} - \frac{119}{825} a^{14} - \frac{128}{825} a^{13} - \frac{101}{550} a^{12} - \frac{48}{275} a^{11} - \frac{877}{4950} a^{10} - \frac{1403}{4950} a^{9} - \frac{274}{825} a^{8} - \frac{2323}{4950} a^{7} + \frac{1091}{2475} a^{6} + \frac{62}{495} a^{5} - \frac{419}{4950} a^{4} - \frac{29}{165} a^{3} - \frac{52}{225} a^{2} - \frac{271}{550} a + \frac{13}{275}$, $\frac{1}{216742613837049754160850} a^{19} + \frac{552313261718377096}{12041256324280541897825} a^{18} - \frac{259574518394143899679}{43348522767409950832170} a^{17} + \frac{248807698868569226192}{36123768972841625693475} a^{16} - \frac{15797979983795142298403}{216742613837049754160850} a^{15} - \frac{894513958768435553461}{14449507589136650277390} a^{14} - \frac{951600201760333079047}{5557502918898711645150} a^{13} + \frac{312535958444226921221}{24082512648561083795650} a^{12} - \frac{25273395197997919914587}{108371306918524877080425} a^{11} + \frac{2114935023094798911286}{8336254378348067467725} a^{10} + \frac{34553454943411108979581}{108371306918524877080425} a^{9} + \frac{10372801564402782849833}{21674261383704975416085} a^{8} + \frac{45834807459364460980283}{216742613837049754160850} a^{7} - \frac{27486446509405521014332}{108371306918524877080425} a^{6} + \frac{22631399124680691676031}{216742613837049754160850} a^{5} + \frac{49346686331481976897534}{108371306918524877080425} a^{4} - \frac{56366205614934028748599}{216742613837049754160850} a^{3} - \frac{26529198212224674373151}{216742613837049754160850} a^{2} + \frac{10183212478981322184373}{24082512648561083795650} a + \frac{2598399136501358467033}{24082512648561083795650}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 784798.952025 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-11})\), 10.0.644204000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.10.13.2 | $x^{10} + 10 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |