Normalized defining polynomial
\( x^{20} + 65 x^{18} + 1815 x^{16} - 4 x^{15} + 28460 x^{14} + 90 x^{13} + 276395 x^{12} + 5430 x^{11} + 1727545 x^{10} + 61230 x^{9} + 6965605 x^{8} + 202090 x^{7} + 17624360 x^{6} - 246742 x^{5} + 26512155 x^{4} - 1889530 x^{3} + 22642685 x^{2} - 1174080 x + 10740479 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6472892377132656250000000000000000=2^{16}\cdot 5^{22}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{3}{14} a^{16} + \frac{1}{14} a^{15} + \frac{3}{14} a^{14} + \frac{1}{7} a^{12} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{5}{14} a^{8} - \frac{2}{7} a^{7} + \frac{3}{14} a^{6} - \frac{5}{14} a^{5} - \frac{2}{7} a^{4} - \frac{3}{14} a^{3} - \frac{3}{14} a^{2} + \frac{3}{7} a + \frac{1}{14}$, $\frac{1}{8004267130931940208479210885343260430757393425875644843698} a^{19} - \frac{102264640770677897230640272447960063157500253008808234364}{4002133565465970104239605442671630215378696712937822421849} a^{18} - \frac{587698686827607115560572376877994241510063530773835844251}{8004267130931940208479210885343260430757393425875644843698} a^{17} - \frac{574622254892657717793890280471298426296505255387890010487}{4002133565465970104239605442671630215378696712937822421849} a^{16} + \frac{122527566210154285846133958957642118467174746118151227549}{571733366495138586319943634667375745054099530419688917407} a^{15} - \frac{626404061639619580595636779668690191994664862640133178741}{8004267130931940208479210885343260430757393425875644843698} a^{14} - \frac{142322699186107167483377864945192402876745382748385268750}{4002133565465970104239605442671630215378696712937822421849} a^{13} + \frac{945645018908495359385073085815656686733318629214163868522}{4002133565465970104239605442671630215378696712937822421849} a^{12} + \frac{634609046700105163191316557569427008123735016933365960176}{4002133565465970104239605442671630215378696712937822421849} a^{11} + \frac{658478824000432036740525709058663140485623093363086999607}{8004267130931940208479210885343260430757393425875644843698} a^{10} + \frac{518152750568258330514651671819249136998368979779739048563}{1143466732990277172639887269334751490108199060839377834814} a^{9} + \frac{1667552550536169238471451535159603850792111429979174674365}{4002133565465970104239605442671630215378696712937822421849} a^{8} + \frac{981526840162404256675539185886281687852260001880807589425}{8004267130931940208479210885343260430757393425875644843698} a^{7} + \frac{145620140373372120536547369916067090842646610296468373413}{1143466732990277172639887269334751490108199060839377834814} a^{6} + \frac{951103922529987844641710234790401132049561785491563554135}{4002133565465970104239605442671630215378696712937822421849} a^{5} + \frac{645440626534726457670119673415561395569554375216489113521}{4002133565465970104239605442671630215378696712937822421849} a^{4} - \frac{1483358348883054736425482262149992387247415455313188184227}{4002133565465970104239605442671630215378696712937822421849} a^{3} + \frac{816247457786926239687122110766870551766277316239449455963}{4002133565465970104239605442671630215378696712937822421849} a^{2} + \frac{774740552634067925223579824351036994486857601655982379873}{8004267130931940208479210885343260430757393425875644843698} a + \frac{4177665331420159195327126133782292526113812733877229310}{26504195797787881485030499620341921956150309357204121999}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 207001385.12693426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{5}, \sqrt{-23})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.16090857500000000.2, 10.0.80454287500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |