Normalized defining polynomial
\( x^{20} - 5 x^{19} + 7 x^{18} - 6 x^{17} + 38 x^{16} - 98 x^{15} + 84 x^{14} - 82 x^{13} + 358 x^{12} - 752 x^{11} + 849 x^{10} - 748 x^{9} + 1133 x^{8} - 2523 x^{7} + 3679 x^{6} - 2392 x^{5} - 407 x^{4} + 1206 x^{3} - 198 x^{2} + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64453982490130814650341801=3^{10}\cdot 127^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{63} a^{16} + \frac{1}{21} a^{15} - \frac{1}{21} a^{13} - \frac{10}{63} a^{12} + \frac{8}{63} a^{11} + \frac{2}{63} a^{10} - \frac{2}{63} a^{9} + \frac{10}{63} a^{8} - \frac{16}{63} a^{7} + \frac{5}{21} a^{6} + \frac{8}{21} a^{5} + \frac{5}{63} a^{4} - \frac{29}{63} a^{3} - \frac{8}{63} a^{2} + \frac{1}{21} a - \frac{3}{7}$, $\frac{1}{315} a^{17} - \frac{2}{315} a^{16} - \frac{8}{315} a^{15} - \frac{2}{63} a^{14} - \frac{1}{35} a^{13} + \frac{1}{35} a^{12} - \frac{38}{315} a^{11} - \frac{8}{63} a^{10} - \frac{22}{315} a^{9} + \frac{46}{315} a^{8} + \frac{19}{63} a^{7} + \frac{89}{315} a^{6} - \frac{1}{105} a^{5} + \frac{107}{315} a^{4} - \frac{23}{63} a^{3} - \frac{76}{315} a^{2} - \frac{1}{15} a + \frac{8}{35}$, $\frac{1}{945} a^{18} - \frac{1}{945} a^{17} + \frac{4}{315} a^{15} - \frac{19}{945} a^{14} - \frac{2}{63} a^{13} - \frac{8}{315} a^{12} + \frac{107}{945} a^{11} - \frac{7}{45} a^{10} - \frac{101}{945} a^{9} + \frac{346}{945} a^{8} + \frac{26}{105} a^{7} + \frac{26}{945} a^{6} - \frac{181}{945} a^{5} + \frac{2}{45} a^{4} + \frac{464}{945} a^{3} - \frac{8}{105} a^{2} - \frac{26}{105} a + \frac{16}{35}$, $\frac{1}{70682108655345705} a^{19} - \frac{2064802929673}{23560702885115235} a^{18} - \frac{21908368528754}{14136421731069141} a^{17} - \frac{26260321476943}{7853567628371745} a^{16} + \frac{1429470915863129}{70682108655345705} a^{15} - \frac{323190741632443}{70682108655345705} a^{14} - \frac{411921627173003}{7853567628371745} a^{13} - \frac{3576479976626038}{70682108655345705} a^{12} + \frac{7552902629117156}{70682108655345705} a^{11} + \frac{1674077835902603}{14136421731069141} a^{10} - \frac{2201128765517858}{14136421731069141} a^{9} + \frac{17569096364182213}{70682108655345705} a^{8} + \frac{2359918377682634}{70682108655345705} a^{7} - \frac{2974335169582121}{70682108655345705} a^{6} + \frac{7803847799447054}{70682108655345705} a^{5} + \frac{5287380068491817}{70682108655345705} a^{4} - \frac{29965780094638849}{70682108655345705} a^{3} + \frac{127431942612860}{523571175224783} a^{2} - \frac{570550820611489}{2617855876123915} a - \frac{535041520032891}{2617855876123915}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{20792896236083}{1121938232624535} a^{19} + \frac{316406947554743}{3365814697873605} a^{18} - \frac{493445238192283}{3365814697873605} a^{17} + \frac{106368932009524}{673162939574721} a^{16} - \frac{835330270712128}{1121938232624535} a^{15} + \frac{6479708874404764}{3365814697873605} a^{14} - \frac{6841796977136548}{3365814697873605} a^{13} + \frac{499593004405672}{224387646524907} a^{12} - \frac{24125278027072862}{3365814697873605} a^{11} + \frac{51609326879648291}{3365814697873605} a^{10} - \frac{13175111858410526}{673162939574721} a^{9} + \frac{22147923700244143}{1121938232624535} a^{8} - \frac{92052645347638613}{3365814697873605} a^{7} + \frac{181026481011228427}{3365814697873605} a^{6} - \frac{18178325426676785}{224387646524907} a^{5} + \frac{227350400067571229}{3365814697873605} a^{4} - \frac{60984261949487876}{3365814697873605} a^{3} - \frac{31891216649954833}{3365814697873605} a^{2} + \frac{355848576230272}{74795882174969} a - \frac{123058272896158}{74795882174969} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 191976.450688 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-127}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{381}) \), \(\Q(\sqrt{-3}, \sqrt{-127})\), 5.1.16129.1 x5, 10.0.33038369407.1, 10.0.63215147763.1 x5, 10.2.8028323765901.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $127$ | 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |