Normalized defining polynomial
\( x^{20} - 9 x^{19} + 34 x^{18} - 44 x^{17} - 265 x^{16} + 1286 x^{15} - 773 x^{14} - 3682 x^{13} + 13368 x^{12} + 20263 x^{11} - 34508 x^{10} - 44433 x^{9} + 246404 x^{8} + 66122 x^{7} - 138042 x^{6} - 33663 x^{5} + 299206 x^{4} + 241895 x^{3} + 108785 x^{2} + 43805 x + 8705 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6422646617589481211251988555908203125=5^{15}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{20} a^{16} - \frac{3}{20} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{20} a^{12} + \frac{1}{20} a^{10} + \frac{1}{4} a^{9} - \frac{1}{5} a^{8} - \frac{1}{4} a^{6} - \frac{1}{10} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{20} a^{17} - \frac{1}{5} a^{15} - \frac{1}{5} a^{13} + \frac{3}{20} a^{12} + \frac{1}{20} a^{11} - \frac{1}{10} a^{10} + \frac{1}{20} a^{9} + \frac{2}{5} a^{8} + \frac{1}{4} a^{7} + \frac{3}{20} a^{6} + \frac{1}{4} a^{5} + \frac{3}{20} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{200} a^{18} + \frac{1}{50} a^{17} - \frac{1}{40} a^{16} + \frac{27}{200} a^{15} + \frac{41}{200} a^{14} - \frac{19}{100} a^{13} + \frac{1}{100} a^{12} + \frac{1}{100} a^{11} + \frac{3}{50} a^{10} - \frac{63}{200} a^{9} - \frac{19}{200} a^{8} + \frac{53}{200} a^{7} - \frac{39}{100} a^{6} - \frac{3}{40} a^{5} + \frac{61}{200} a^{4} - \frac{1}{40} a^{3} - \frac{1}{20} a^{2} - \frac{2}{5} a + \frac{11}{40}$, $\frac{1}{4417767623503197308841863084163576006521698074676271800} a^{19} - \frac{4704522752173557744083060478540485431738296893689481}{4417767623503197308841863084163576006521698074676271800} a^{18} + \frac{15456649275158044096953985120649012043723564708408867}{883553524700639461768372616832715201304339614935254360} a^{17} - \frac{1294073839300694504149909865756904151271261998302776}{552220952937899663605232885520447000815212259334533975} a^{16} - \frac{459770051367943952924361317222575708598765961945215197}{2208883811751598654420931542081788003260849037338135900} a^{15} + \frac{131206259190456704915243436244819420990711960653122977}{4417767623503197308841863084163576006521698074676271800} a^{14} + \frac{241557850155541824853355717932394553531792212836941603}{1104441905875799327210465771040894001630424518669067950} a^{13} - \frac{91776524444751504883320753718749901133835002966850911}{552220952937899663605232885520447000815212259334533975} a^{12} + \frac{147956440177953395418776980323362624465871959344280161}{2208883811751598654420931542081788003260849037338135900} a^{11} + \frac{377180927098147797965628276770411540150890987957886297}{4417767623503197308841863084163576006521698074676271800} a^{10} - \frac{3233981101365491148902206184905526238385798820683523}{552220952937899663605232885520447000815212259334533975} a^{9} - \frac{257120138516231028819344332953891745181451164850190819}{552220952937899663605232885520447000815212259334533975} a^{8} + \frac{1806960940879583724208783629845713654859687175676481017}{4417767623503197308841863084163576006521698074676271800} a^{7} - \frac{145071835633891436945306190507603486450100456225004909}{883553524700639461768372616832715201304339614935254360} a^{6} - \frac{94459808901066370219068292231294072102712117594726893}{552220952937899663605232885520447000815212259334533975} a^{5} - \frac{188027388157942395766016267045960276088887375336931311}{441776762350319730884186308416357600652169807467627180} a^{4} - \frac{38884064948256819943441123028905661876572153083517337}{883553524700639461768372616832715201304339614935254360} a^{3} - \frac{166197155680780685378773434800219902822174675551943453}{441776762350319730884186308416357600652169807467627180} a^{2} + \frac{285185942889398450066857956079879574971509115006167011}{883553524700639461768372616832715201304339614935254360} a - \frac{65507706058383256574616251776933304950429229333740807}{176710704940127892353674523366543040260867922987050872}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10016717916.562931 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.105125.2, 5.1.88410125.1, 10.2.39081751012578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.10.9.2 | $x^{10} + 58$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |
| 29.10.9.2 | $x^{10} + 58$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |