Normalized defining polynomial
\( x^{20} + 59 x^{18} - 12 x^{17} + 1560 x^{16} - 276 x^{15} + 23886 x^{14} - 756 x^{13} + 231729 x^{12} + 52512 x^{11} + 1474509 x^{10} + 789438 x^{9} + 6623538 x^{8} + 4667544 x^{7} + 22362606 x^{6} + 17022462 x^{5} + 47245728 x^{4} + 49085616 x^{3} + 55936280 x^{2} + 59948856 x + 56607784 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6419791692782351621744400000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{12} - \frac{1}{6} a^{9} + \frac{1}{18} a^{8} - \frac{1}{3} a^{7} - \frac{1}{18} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} - \frac{1}{9} a^{9} - \frac{7}{18} a^{7} - \frac{1}{2} a^{5} - \frac{4}{9} a^{3} + \frac{4}{9} a$, $\frac{1}{180} a^{16} + \frac{1}{45} a^{15} - \frac{1}{18} a^{13} + \frac{7}{90} a^{12} - \frac{1}{30} a^{11} - \frac{2}{45} a^{10} + \frac{1}{18} a^{9} + \frac{7}{60} a^{8} - \frac{23}{90} a^{7} + \frac{1}{90} a^{6} + \frac{13}{30} a^{5} + \frac{17}{90} a^{4} + \frac{29}{90} a^{3} - \frac{7}{15} a^{2} - \frac{22}{45} a + \frac{14}{45}$, $\frac{1}{180} a^{17} + \frac{1}{45} a^{15} + \frac{1}{45} a^{13} - \frac{1}{15} a^{12} - \frac{7}{90} a^{11} + \frac{1}{15} a^{10} - \frac{29}{180} a^{9} + \frac{4}{45} a^{7} + \frac{1}{6} a^{6} + \frac{11}{90} a^{5} + \frac{7}{30} a^{4} - \frac{14}{45} a^{3} - \frac{2}{5} a^{2} + \frac{22}{45} a + \frac{1}{5}$, $\frac{1}{180} a^{18} + \frac{1}{45} a^{15} + \frac{1}{45} a^{14} + \frac{2}{45} a^{13} - \frac{1}{18} a^{12} + \frac{1}{30} a^{11} + \frac{1}{60} a^{10} + \frac{1}{18} a^{9} - \frac{2}{45} a^{8} - \frac{19}{45} a^{7} + \frac{7}{90} a^{6} - \frac{1}{3} a^{5} - \frac{1}{15} a^{4} + \frac{19}{45} a^{3} + \frac{1}{45} a^{2} + \frac{17}{45} a + \frac{19}{45}$, $\frac{1}{2934660225643079172518730087406255411218231285927481012860} a^{19} - \frac{4377357491283066914899017609468844374503002569370225171}{2934660225643079172518730087406255411218231285927481012860} a^{18} + \frac{460474763929381880996090247732308840271622446308863909}{293466022564307917251873008740625541121823128592748101286} a^{17} - \frac{69629785802073882069543633320691818551962015764096773}{48911003760717986208645501456770923520303854765458016881} a^{16} + \frac{37564260132386193538203802847008156813418501750516106667}{1467330112821539586259365043703127705609115642963740506430} a^{15} - \frac{11286273464163471632742007043649067653128152377831478939}{733665056410769793129682521851563852804557821481870253215} a^{14} - \frac{6195126567323831352992541814456959280917367485394005968}{81518339601196643681075835761284872533839757942430028135} a^{13} - \frac{23127009960754410459706747410374145831719650544065242647}{293466022564307917251873008740625541121823128592748101286} a^{12} + \frac{5278185024746260839044141416721472515133083332055742103}{419237175091868453216961441058036487316890183703925858980} a^{11} + \frac{34197939724864505918357672867045022855436076954321471303}{978220075214359724172910029135418470406077095309160337620} a^{10} + \frac{243958234146389113206516318978938274593003794605996790951}{1467330112821539586259365043703127705609115642963740506430} a^{9} + \frac{47259501182786275194338005587035728365684632433404629759}{1467330112821539586259365043703127705609115642963740506430} a^{8} - \frac{78038744832389616210694254698054938100962717052577276143}{244555018803589931043227507283854617601519273827290084405} a^{7} - \frac{326875023071080546325865895980742643991835851646711313761}{1467330112821539586259365043703127705609115642963740506430} a^{6} - \frac{61261346865823145274737277956157957032870152497905402741}{733665056410769793129682521851563852804557821481870253215} a^{5} + \frac{5009427887162119501263254833436000133454568157567912366}{11645477085885234811582262251612124647691393991775718305} a^{4} + \frac{234261119522268407706137398798133978210456220587529697874}{733665056410769793129682521851563852804557821481870253215} a^{3} + \frac{57303952779007773101511002808008923167237361170506791333}{146733011282153958625936504370312770560911564296374050643} a^{2} - \frac{6612415165464390542445495433889203615079255822806899923}{20961858754593422660848072052901824365844509185196292949} a + \frac{25140252631448508191311961652386047539191622336037214575}{146733011282153958625936504370312770560911564296374050643}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54130298678.98963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{345}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-15}, \sqrt{-23})\), 5.1.162000.1, 10.0.393660000000.1, 10.2.2533730785380000000.1, 10.0.168915385692000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |