Normalized defining polynomial
\( x^{20} + 20 x^{18} - 4 x^{17} + 197 x^{16} - 72 x^{15} + 1208 x^{14} - 648 x^{13} + 5113 x^{12} - 3560 x^{11} + 15572 x^{10} - 13008 x^{9} + 35017 x^{8} - 32248 x^{7} + 57740 x^{6} - 54220 x^{5} + 67754 x^{4} - 56792 x^{3} + 49668 x^{2} - 32600 x + 16924 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(640092585108940580184055833690112=2^{44}\cdot 439\cdot 1663\cdot 2657^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 439, 1663, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{4379279850657456319225827047558} a^{19} + \frac{94102882619352758258420471338}{2189639925328728159612913523779} a^{18} - \frac{246415174471991773110284071434}{2189639925328728159612913523779} a^{17} - \frac{74582387513800781745540370222}{2189639925328728159612913523779} a^{16} + \frac{25067620093529838507278870047}{230488413192497701011885634082} a^{15} + \frac{512817832327332959399659952617}{2189639925328728159612913523779} a^{14} + \frac{56518534070670017831784410391}{115244206596248850505942817041} a^{13} + \frac{992733709951985306317251854313}{2189639925328728159612913523779} a^{12} + \frac{1748347743534525446468123649471}{4379279850657456319225827047558} a^{11} - \frac{263497974286888374068229860016}{2189639925328728159612913523779} a^{10} + \frac{773470243868506516678135848483}{2189639925328728159612913523779} a^{9} + \frac{228405273224152117674581863254}{2189639925328728159612913523779} a^{8} - \frac{853443807474886479915057623371}{4379279850657456319225827047558} a^{7} - \frac{700152814501902477966856425663}{2189639925328728159612913523779} a^{6} - \frac{454083843537419059855379251133}{2189639925328728159612913523779} a^{5} - \frac{274763058157248951621201034847}{2189639925328728159612913523779} a^{4} - \frac{1002360761042943121999013534002}{2189639925328728159612913523779} a^{3} - \frac{930166392966633935318918320590}{2189639925328728159612913523779} a^{2} + \frac{877189950511052372194953968667}{2189639925328728159612913523779} a - \frac{209353276208132098941999641583}{2189639925328728159612913523779}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121129532.773 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 396 conjugacy class representatives for t20n1036 are not computed |
| Character table for t20n1036 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.12.28.65 | $x^{12} + 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{6} + 4 x^{5} + 2$ | $12$ | $1$ | $28$ | 12T48 | $[2, 8/3, 8/3, 3]_{3}^{2}$ | |
| 439 | Data not computed | ||||||
| 1663 | Data not computed | ||||||
| 2657 | Data not computed | ||||||