Normalized defining polynomial
\( x^{20} - 5 x^{18} + 15 x^{16} - 10 x^{14} - 75 x^{12} + 157 x^{10} - 75 x^{8} - 10 x^{6} + 15 x^{4} - 5 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(640000000000000000000000=2^{28}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{158} a^{16} - \frac{19}{79} a^{14} + \frac{2}{79} a^{12} - \frac{25}{158} a^{10} - \frac{1}{2} a^{9} - \frac{22}{79} a^{8} - \frac{25}{158} a^{6} - \frac{1}{2} a^{5} - \frac{75}{158} a^{4} + \frac{41}{158} a^{2} - \frac{1}{2} a - \frac{39}{79}$, $\frac{1}{158} a^{17} - \frac{19}{79} a^{15} + \frac{2}{79} a^{13} - \frac{25}{158} a^{11} + \frac{35}{158} a^{9} - \frac{1}{2} a^{8} - \frac{25}{158} a^{7} + \frac{2}{79} a^{5} - \frac{1}{2} a^{4} + \frac{41}{158} a^{3} + \frac{1}{158} a - \frac{1}{2}$, $\frac{1}{6636} a^{18} - \frac{1}{316} a^{17} - \frac{13}{6636} a^{16} + \frac{19}{158} a^{15} + \frac{17}{237} a^{14} - \frac{1}{79} a^{13} - \frac{397}{3318} a^{12} - \frac{27}{158} a^{11} + \frac{1069}{6636} a^{10} - \frac{35}{316} a^{9} - \frac{2389}{6636} a^{8} - \frac{27}{158} a^{7} - \frac{412}{1659} a^{6} + \frac{77}{158} a^{5} - \frac{26}{237} a^{4} - \frac{30}{79} a^{3} - \frac{2687}{6636} a^{2} + \frac{157}{316} a + \frac{1289}{6636}$, $\frac{1}{6636} a^{19} + \frac{2}{1659} a^{17} - \frac{1}{316} a^{16} - \frac{23}{474} a^{15} + \frac{19}{158} a^{14} - \frac{355}{3318} a^{13} - \frac{1}{79} a^{12} - \frac{1115}{6636} a^{11} - \frac{27}{158} a^{10} + \frac{416}{1659} a^{9} - \frac{35}{316} a^{8} + \frac{701}{1659} a^{7} - \frac{27}{158} a^{6} - \frac{23}{237} a^{5} + \frac{77}{158} a^{4} + \frac{3151}{6636} a^{3} - \frac{30}{79} a^{2} + \frac{655}{3318} a + \frac{157}{316}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1585}{474} a^{19} + \frac{7225}{474} a^{17} - \frac{20633}{474} a^{15} + \frac{6935}{474} a^{13} + \frac{121385}{474} a^{11} - \frac{97630}{237} a^{9} + \frac{18110}{237} a^{7} + \frac{27461}{474} a^{5} - \frac{5885}{237} a^{3} + \frac{3085}{474} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13353.721510432046 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(i, \sqrt{5})\), 5.1.50000.1, 10.0.800000000000.1, 10.0.160000000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |