Normalized defining polynomial
\( x^{20} - x^{19} - 14 x^{18} + 8 x^{17} + 84 x^{16} + 21 x^{15} - 284 x^{14} - 856 x^{13} + 2957 x^{12} - 2148 x^{11} - 454 x^{10} + 442 x^{9} + 1242 x^{8} - 2984 x^{7} + 2070 x^{6} + 2062 x^{5} - 2189 x^{4} - 693 x^{3} + 572 x^{2} + 154 x + 11 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6276856753442000000000000000=2^{16}\cdot 5^{15}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{166894398778707808064542466939} a^{19} - \frac{81342462414878754472680703001}{166894398778707808064542466939} a^{18} + \frac{82975572822813404378177336527}{166894398778707808064542466939} a^{17} - \frac{32613089877683084937381871053}{166894398778707808064542466939} a^{16} + \frac{34645633792121937635007252191}{166894398778707808064542466939} a^{15} + \frac{71329178422629680643197193156}{166894398778707808064542466939} a^{14} + \frac{48122217081419285585794148776}{166894398778707808064542466939} a^{13} + \frac{50321614987955554498680341230}{166894398778707808064542466939} a^{12} - \frac{42899926787157619501645068786}{166894398778707808064542466939} a^{11} + \frac{76379818171470440054247500927}{166894398778707808064542466939} a^{10} + \frac{50748945222538462762456310419}{166894398778707808064542466939} a^{9} + \frac{67177527661623251960125733291}{166894398778707808064542466939} a^{8} - \frac{19507557483348244984263697412}{166894398778707808064542466939} a^{7} + \frac{60516221341276761211800597169}{166894398778707808064542466939} a^{6} - \frac{29679206436944698872352897170}{166894398778707808064542466939} a^{5} + \frac{81849202144785070030539845747}{166894398778707808064542466939} a^{4} - \frac{24547693278905361901431792595}{166894398778707808064542466939} a^{3} - \frac{50669377913887003485321598599}{166894398778707808064542466939} a^{2} - \frac{28662932791678913525008537462}{166894398778707808064542466939} a - \frac{13128490378503943648289869599}{166894398778707808064542466939}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7289060764984650835005400}{43678199104608167512311559} a^{19} + \frac{353858640310315206658040}{43678199104608167512311559} a^{18} + \frac{100402197392328906938671128}{43678199104608167512311559} a^{17} + \frac{36831152220859970975538457}{43678199104608167512311559} a^{16} - \frac{550348032519642192977979384}{43678199104608167512311559} a^{15} - \frac{660494380548773547570386076}{43678199104608167512311559} a^{14} + \frac{1299722710662715253733749416}{43678199104608167512311559} a^{13} + \frac{7267615178063123569779326144}{43678199104608167512311559} a^{12} - \frac{14351607598008853506725261940}{43678199104608167512311559} a^{11} + \frac{4004709282481430988047733996}{43678199104608167512311559} a^{10} + \frac{3705311903005180561338399376}{43678199104608167512311559} a^{9} + \frac{855135795348139793562569126}{43678199104608167512311559} a^{8} - \frac{7383438263957563805663293836}{43678199104608167512311559} a^{7} + \frac{15148777819431723639328561640}{43678199104608167512311559} a^{6} - \frac{2616110873826516385385280640}{43678199104608167512311559} a^{5} - \frac{13791710927598537393170991940}{43678199104608167512311559} a^{4} + \frac{2772122559360190350359044692}{43678199104608167512311559} a^{3} + \frac{4315266349251662694131239052}{43678199104608167512311559} a^{2} + \frac{4101051333996469108770932}{43678199104608167512311559} a - \frac{63937500830760514518040451}{43678199104608167512311559} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 475214.0571061137 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times F_5$ (as 20T29):
| A solvable group of order 100 |
| The 25 conjugacy class representatives for $C_5\times F_5$ |
| Character table for $C_5\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |