Normalized defining polynomial
\( x^{20} - 2 x^{19} + 13 x^{18} - 12 x^{17} + 84 x^{16} - 62 x^{15} + 334 x^{14} - 131 x^{13} + 835 x^{12} - 261 x^{11} + 1424 x^{10} - 259 x^{9} + 1546 x^{8} - 391 x^{7} + 1026 x^{6} - 217 x^{5} + 393 x^{4} - 148 x^{3} + 53 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(626181899727703906518837890625=3^{10}\cdot 5^{10}\cdot 19^{4}\cdot 1699^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{32281} a^{18} - \frac{7057}{32281} a^{17} + \frac{2845}{32281} a^{16} - \frac{8859}{32281} a^{15} + \frac{3845}{32281} a^{14} - \frac{439}{32281} a^{13} + \frac{2012}{32281} a^{12} + \frac{15593}{32281} a^{11} - \frac{5628}{32281} a^{10} + \frac{7398}{32281} a^{9} - \frac{6562}{32281} a^{8} - \frac{10977}{32281} a^{7} + \frac{6861}{32281} a^{6} + \frac{5670}{32281} a^{5} - \frac{4398}{32281} a^{4} + \frac{15592}{32281} a^{3} + \frac{6805}{32281} a^{2} + \frac{7174}{32281} a + \frac{9042}{32281}$, $\frac{1}{46233739719000293} a^{19} - \frac{57517685107}{46233739719000293} a^{18} - \frac{491141727803487}{2433354722052647} a^{17} - \frac{12219458365572879}{46233739719000293} a^{16} - \frac{22129964734650595}{46233739719000293} a^{15} - \frac{22484070062905301}{46233739719000293} a^{14} + \frac{5414170351347896}{46233739719000293} a^{13} - \frac{23504473693254}{2433354722052647} a^{12} - \frac{3695431510719062}{46233739719000293} a^{11} + \frac{544913584295067}{2433354722052647} a^{10} - \frac{20072431248245036}{46233739719000293} a^{9} + \frac{3461345774137186}{46233739719000293} a^{8} + \frac{14978310317575641}{46233739719000293} a^{7} - \frac{3075434014886573}{46233739719000293} a^{6} + \frac{16765572826119122}{46233739719000293} a^{5} - \frac{4630776773835344}{46233739719000293} a^{4} - \frac{1286077094050494}{46233739719000293} a^{3} - \frac{19375250473254905}{46233739719000293} a^{2} - \frac{7869787312611392}{46233739719000293} a - \frac{302546129091893}{46233739719000293}$
Class group and class number
$C_{31}$, which has order $31$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6140469551760967}{46233739719000293} a^{19} + \frac{12041133273761351}{46233739719000293} a^{18} - \frac{79747152442969007}{46233739719000293} a^{17} + \frac{71275317646564587}{46233739719000293} a^{16} - \frac{517827133234206935}{46233739719000293} a^{15} + \frac{363905742148279267}{46233739719000293} a^{14} - \frac{2067140043822169222}{46233739719000293} a^{13} + \frac{739849691625530459}{46233739719000293} a^{12} - \frac{5215077144063729038}{46233739719000293} a^{11} + \frac{1415996519061374678}{46233739719000293} a^{10} - \frac{8970679599615864647}{46233739719000293} a^{9} + \frac{1259424950078825444}{46233739719000293} a^{8} - \frac{9902186172725148888}{46233739719000293} a^{7} + \frac{1963753166845278761}{46233739719000293} a^{6} - \frac{6685547166356904043}{46233739719000293} a^{5} + \frac{1060600226570998709}{46233739719000293} a^{4} - \frac{2632632099092964580}{46233739719000293} a^{3} + \frac{726570397914715064}{46233739719000293} a^{2} - \frac{372695086362260451}{46233739719000293} a + \frac{56630305275134303}{46233739719000293} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 351148.02443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T100):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 1699 | Data not computed | ||||||