Normalized defining polynomial
\( x^{20} - x^{19} + x^{18} + 2 x^{17} - 8 x^{16} + 28 x^{15} - 4 x^{14} - 51 x^{13} + 128 x^{12} - 101 x^{11} + 101 x^{10} + 230 x^{9} - 620 x^{8} + 785 x^{7} + 269 x^{6} - 980 x^{5} + 955 x^{4} + 245 x^{3} - 135 x^{2} + 315 x + 145 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(622079687467809991455078125=5^{14}\cdot 269^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 269$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{1239765841472496256898237697} a^{19} - \frac{13283840363435528885853061}{1239765841472496256898237697} a^{18} + \frac{33565173045661610061759191}{1239765841472496256898237697} a^{17} - \frac{95699493724632117028256529}{413255280490832085632745899} a^{16} - \frac{567475764471861617471477150}{1239765841472496256898237697} a^{15} - \frac{434602140134726468069841683}{1239765841472496256898237697} a^{14} - \frac{136947003171260937794175589}{413255280490832085632745899} a^{13} - \frac{108728043868738800056722797}{413255280490832085632745899} a^{12} + \frac{493763996738643329694414571}{1239765841472496256898237697} a^{11} + \frac{117868501840379744677245075}{413255280490832085632745899} a^{10} - \frac{25280179917076610836967324}{65250833761710329310433563} a^{9} + \frac{5381672175194819101347181}{1239765841472496256898237697} a^{8} - \frac{71468287797365207381958703}{413255280490832085632745899} a^{7} - \frac{616873582574454468316754491}{1239765841472496256898237697} a^{6} + \frac{615508599633901303924601924}{1239765841472496256898237697} a^{5} + \frac{71614967096984589241981252}{413255280490832085632745899} a^{4} - \frac{499377830443150578504098918}{1239765841472496256898237697} a^{3} - \frac{157709584865028280496546256}{413255280490832085632745899} a^{2} + \frac{186713750104792741472538206}{1239765841472496256898237697} a + \frac{296680118207042707996253299}{1239765841472496256898237697}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 224944.674261 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.33625.1, 10.2.5653203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 269 | Data not computed | ||||||