Normalized defining polynomial
\( x^{20} - 6 x^{19} + 11 x^{18} + 66 x^{17} - 310 x^{16} + 6 x^{15} + 9149 x^{14} - 62535 x^{13} + 298054 x^{12} - 1076553 x^{11} + 3378009 x^{10} - 8889480 x^{9} + 21295798 x^{8} - 43398393 x^{7} + 82262609 x^{6} - 129433389 x^{5} + 193238486 x^{4} - 220673892 x^{3} + 249064514 x^{2} - 165797355 x + 128216149 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61994950383582739305329189990712890625=3^{10}\cdot 5^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{2}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{3} a^{9} + \frac{4}{9} a^{8} + \frac{2}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{2}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{9} a^{7} + \frac{2}{9} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} + \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{27} a^{16} + \frac{1}{27} a^{15} + \frac{1}{27} a^{14} - \frac{2}{27} a^{13} + \frac{2}{27} a^{12} + \frac{4}{27} a^{11} + \frac{2}{9} a^{10} + \frac{13}{27} a^{9} + \frac{11}{27} a^{8} - \frac{13}{27} a^{7} + \frac{2}{9} a^{6} + \frac{8}{27} a^{5} + \frac{8}{27} a^{4} - \frac{13}{27} a^{3} - \frac{2}{27} a^{2} + \frac{8}{27} a - \frac{2}{27}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{13} - \frac{4}{27} a^{12} - \frac{4}{27} a^{11} - \frac{8}{27} a^{10} - \frac{11}{27} a^{9} - \frac{4}{9} a^{8} - \frac{2}{27} a^{7} - \frac{10}{27} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{4}{27} a^{3} - \frac{2}{27} a^{2} - \frac{4}{27} a - \frac{1}{27}$, $\frac{1}{154629} a^{18} + \frac{701}{154629} a^{17} - \frac{1526}{154629} a^{16} + \frac{5047}{154629} a^{15} + \frac{3233}{154629} a^{14} + \frac{5228}{154629} a^{13} - \frac{12661}{154629} a^{12} - \frac{15661}{51543} a^{11} + \frac{23083}{51543} a^{10} - \frac{660}{1909} a^{9} + \frac{2828}{51543} a^{8} - \frac{5555}{17181} a^{7} + \frac{71836}{154629} a^{6} + \frac{17177}{154629} a^{5} - \frac{34649}{154629} a^{4} - \frac{38708}{154629} a^{3} - \frac{64318}{154629} a^{2} - \frac{33313}{154629} a + \frac{63821}{154629}$, $\frac{1}{1598743884469877279434743703667212518966330534274081301349} a^{19} - \frac{937276192372294628867455213053579798560045395890074}{532914628156625759811581234555737506322110178091360433783} a^{18} - \frac{9477805768459211697079726030325814465020134483800370234}{532914628156625759811581234555737506322110178091360433783} a^{17} + \frac{28191106304945188490659130690015533509615039239535038171}{1598743884469877279434743703667212518966330534274081301349} a^{16} + \frac{14606864360949816774856626326312545616293875263653785086}{532914628156625759811581234555737506322110178091360433783} a^{15} - \frac{43780869883161515656342865834877410435401287780703979744}{1598743884469877279434743703667212518966330534274081301349} a^{14} + \frac{8800734096819764436168425558208944978449964378813700607}{122980298805375175341134131051324039920486964174929330873} a^{13} + \frac{7224847259348530254473657625366459652321315713453115712}{1598743884469877279434743703667212518966330534274081301349} a^{12} + \frac{28118880037215443319020243391628164038439917954920227539}{532914628156625759811581234555737506322110178091360433783} a^{11} + \frac{5621842773970762480076433456583035378754744430988437329}{177638209385541919937193744851912502107370059363786811261} a^{10} - \frac{24300393385731566031379096179943895771950210438858730359}{532914628156625759811581234555737506322110178091360433783} a^{9} - \frac{105503581856388418196946239726093765420760665853470573399}{532914628156625759811581234555737506322110178091360433783} a^{8} - \frac{96545100233716684512120998859768609485752689005819135828}{1598743884469877279434743703667212518966330534274081301349} a^{7} + \frac{4954181694394180408772615604778507532445523104740752834}{19737578820615768881910416094656944678596673262642979029} a^{6} + \frac{11640323259542871850049490973332426908611198070247381035}{59212736461847306645731248283970834035790019787928937087} a^{5} - \frac{405125918911100669313009390598747248090127399665316452085}{1598743884469877279434743703667212518966330534274081301349} a^{4} - \frac{27412160434510035905070351417869399582932768235308708544}{59212736461847306645731248283970834035790019787928937087} a^{3} + \frac{494461112431960849303131062168878709082296506664432481331}{1598743884469877279434743703667212518966330534274081301349} a^{2} - \frac{170836134851961342566640804963243852612404098968008478551}{1598743884469877279434743703667212518966330534274081301349} a - \frac{6729384387847289975395096200176746011479958444378846584}{19261974511685268426924622935749548421281090774386521703}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{22}\times C_{198}$, which has order $69696$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-6015}) \), \(\Q(\sqrt{-15}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.19635130215759375.1 x5, 10.0.7873687216519509375.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 401 | Data not computed | ||||||