Normalized defining polynomial
\( x^{20} + 240 x^{18} + 23760 x^{16} + 1279800 x^{14} + 41666400 x^{12} + 858839760 x^{10} + 11359132200 x^{8} + 95094259200 x^{6} + 481236228000 x^{4} + 1327547491200 x^{2} + 1519222119840 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6191736422400000000000000000000000000000000000=2^{55}\cdot 3^{10}\cdot 5^{35}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $194.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1200=2^{4}\cdot 3\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1200}(1,·)$, $\chi_{1200}(83,·)$, $\chi_{1200}(323,·)$, $\chi_{1200}(961,·)$, $\chi_{1200}(649,·)$, $\chi_{1200}(587,·)$, $\chi_{1200}(721,·)$, $\chi_{1200}(1043,·)$, $\chi_{1200}(409,·)$, $\chi_{1200}(347,·)$, $\chi_{1200}(481,·)$, $\chi_{1200}(803,·)$, $\chi_{1200}(241,·)$, $\chi_{1200}(1129,·)$, $\chi_{1200}(107,·)$, $\chi_{1200}(1067,·)$, $\chi_{1200}(563,·)$, $\chi_{1200}(169,·)$, $\chi_{1200}(889,·)$, $\chi_{1200}(827,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{18} a^{4}$, $\frac{1}{18} a^{5}$, $\frac{1}{54} a^{6}$, $\frac{1}{54} a^{7}$, $\frac{1}{324} a^{8}$, $\frac{1}{324} a^{9}$, $\frac{1}{972} a^{10}$, $\frac{1}{972} a^{11}$, $\frac{1}{5832} a^{12}$, $\frac{1}{5832} a^{13}$, $\frac{1}{17496} a^{14}$, $\frac{1}{17496} a^{15}$, $\frac{1}{20890224} a^{16} + \frac{17}{870426} a^{14} - \frac{5}{145071} a^{12} - \frac{1}{32238} a^{10} + \frac{67}{64476} a^{8} + \frac{59}{10746} a^{6} + \frac{37}{3582} a^{4} + \frac{53}{597} a^{2} + \frac{92}{199}$, $\frac{1}{20890224} a^{17} + \frac{17}{870426} a^{15} - \frac{5}{145071} a^{13} - \frac{1}{32238} a^{11} + \frac{67}{64476} a^{9} + \frac{59}{10746} a^{7} + \frac{37}{3582} a^{5} + \frac{53}{597} a^{3} + \frac{92}{199} a$, $\frac{1}{180012265713450606096} a^{18} - \frac{51001040537}{15001022142787550508} a^{16} - \frac{97805107086991}{5000340714262516836} a^{14} + \frac{84237471919313}{1111186825391670408} a^{12} + \frac{69536343209071}{277796706347917602} a^{10} + \frac{89338426271681}{92598902115972534} a^{8} - \frac{15231844320487}{1714794483629121} a^{6} - \frac{4920828031068}{571598161209707} a^{4} + \frac{39995792588778}{571598161209707} a^{2} - \frac{275959384749558}{571598161209707}$, $\frac{1}{72184918551093693044496} a^{19} + \frac{4283028333071}{3007704939628903876854} a^{17} - \frac{69081581398061}{2005136626419269251236} a^{15} + \frac{11579157640773745}{334189437736544875206} a^{13} + \frac{7789262637018611}{74264319497009972268} a^{11} + \frac{4673613126224909}{37132159748504986134} a^{9} - \frac{45683194959398203}{12377386582834995378} a^{7} + \frac{38890451619065003}{2062897763805832563} a^{5} - \frac{19202328353176877}{687632587935277521} a^{3} - \frac{29114379176435278}{229210862645092507} a$
Class group and class number
$C_{2}\times C_{2}\times C_{3337924}$, which has order $13351696$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.2304000.1, 5.5.390625.1, 10.10.25000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||