Normalized defining polynomial
\( x^{20} + 240 x^{18} + 23040 x^{16} + 1150200 x^{14} + 32464800 x^{12} + 528359760 x^{10} + 4844788200 x^{8} + 23234688000 x^{6} + 50624676000 x^{4} + 49191753600 x^{2} + 17469056160 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6191736422400000000000000000000000000000000000=2^{55}\cdot 3^{10}\cdot 5^{35}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $194.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1200=2^{4}\cdot 3\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1200}(1,·)$, $\chi_{1200}(203,·)$, $\chi_{1200}(961,·)$, $\chi_{1200}(649,·)$, $\chi_{1200}(1163,·)$, $\chi_{1200}(721,·)$, $\chi_{1200}(227,·)$, $\chi_{1200}(409,·)$, $\chi_{1200}(923,·)$, $\chi_{1200}(947,·)$, $\chi_{1200}(481,·)$, $\chi_{1200}(1187,·)$, $\chi_{1200}(1129,·)$, $\chi_{1200}(683,·)$, $\chi_{1200}(241,·)$, $\chi_{1200}(467,·)$, $\chi_{1200}(707,·)$, $\chi_{1200}(169,·)$, $\chi_{1200}(889,·)$, $\chi_{1200}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{18} a^{4}$, $\frac{1}{18} a^{5}$, $\frac{1}{54} a^{6}$, $\frac{1}{54} a^{7}$, $\frac{1}{324} a^{8}$, $\frac{1}{324} a^{9}$, $\frac{1}{972} a^{10}$, $\frac{1}{972} a^{11}$, $\frac{1}{5832} a^{12}$, $\frac{1}{5832} a^{13}$, $\frac{1}{17496} a^{14}$, $\frac{1}{17496} a^{15}$, $\frac{1}{1763491824} a^{16} - \frac{14}{36739413} a^{14} + \frac{6977}{97971768} a^{12} - \frac{8015}{16328628} a^{10} + \frac{3409}{5442876} a^{8} - \frac{1201}{907146} a^{6} - \frac{406}{151191} a^{4} - \frac{4151}{50397} a^{2} + \frac{3440}{16799}$, $\frac{1}{75830148432} a^{17} + \frac{50285}{12638358072} a^{15} + \frac{208565}{4212786024} a^{13} + \frac{2939}{16328628} a^{11} - \frac{97385}{234043668} a^{9} - \frac{337181}{39007278} a^{7} + \frac{167584}{6501213} a^{5} + \frac{197437}{2167071} a^{3} - \frac{231746}{722357} a$, $\frac{1}{1160077071008557531728} a^{18} - \frac{26093869937}{193346178501426255288} a^{16} - \frac{432991267203419}{21482908722380695032} a^{14} - \frac{1575224903581}{62450316053432253} a^{12} - \frac{5849309706043}{66305273834508318} a^{10} - \frac{516776816875795}{596747464510574862} a^{8} - \frac{169040864479861}{22101757944836106} a^{6} + \frac{33112735296538}{3683626324139351} a^{4} + \frac{443896162578566}{11050878972418053} a^{2} + \frac{3564747576974}{85665728468357}$, $\frac{1}{1160077071008557531728} a^{19} - \frac{11048143}{3580484787063449172} a^{17} + \frac{1265286663912293}{64448726167142085096} a^{15} - \frac{35447407943221}{795663286014099816} a^{13} - \frac{619289168241457}{1790242393531724586} a^{11} + \frac{588973167421}{513994370810142} a^{9} - \frac{148813148174912}{99457910751762477} a^{7} - \frac{730364258516831}{66305273834508318} a^{5} - \frac{179591243653859}{3683626324139351} a^{3} - \frac{613617648262845}{3683626324139351} a$
Class group and class number
$C_{2}\times C_{4}\times C_{3198644}$, which has order $25589152$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.2304000.2, 5.5.390625.1, 10.10.25000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||