Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} - 9 x^{17} + 40 x^{16} + 38 x^{15} - 353 x^{14} + 132 x^{13} + 2003 x^{12} + 428 x^{11} - 4601 x^{10} - 9617 x^{9} + 18106 x^{8} + 6013 x^{7} - 28464 x^{6} + 21165 x^{5} + 34436 x^{4} - 9024 x^{3} - 1728 x^{2} - 2304 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61860941990830221086345856337890625=5^{10}\cdot 11^{16}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{4} a^{15} + \frac{7}{16} a^{14} - \frac{1}{2} a^{13} + \frac{3}{8} a^{12} - \frac{1}{16} a^{11} + \frac{1}{4} a^{10} + \frac{3}{16} a^{9} - \frac{1}{4} a^{8} + \frac{7}{16} a^{7} - \frac{1}{16} a^{6} - \frac{3}{8} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{17} - \frac{1}{16} a^{16} - \frac{9}{64} a^{15} - \frac{3}{8} a^{14} - \frac{13}{32} a^{13} + \frac{31}{64} a^{12} + \frac{1}{16} a^{11} + \frac{19}{64} a^{10} - \frac{5}{16} a^{9} + \frac{7}{64} a^{8} - \frac{17}{64} a^{7} - \frac{3}{32} a^{6} - \frac{3}{64} a^{5} + \frac{1}{4} a^{4} - \frac{19}{64} a^{3} + \frac{1}{16} a^{2}$, $\frac{1}{2164325521932030267004512006381117370559877376} a^{19} - \frac{14728805522915739634164294844762128371381585}{2164325521932030267004512006381117370559877376} a^{18} + \frac{5669614440200752780239594639780291612014531}{541081380483007566751128001595279342639969344} a^{17} + \frac{162189374087527094404549250452968373460714999}{2164325521932030267004512006381117370559877376} a^{16} - \frac{37713389550401666271975331689314169386213809}{270540690241503783375564000797639671319984672} a^{15} - \frac{389049297124044970256701767721519407074503821}{1082162760966015133502256003190558685279938688} a^{14} + \frac{538239879685800014458588357121409030216784959}{2164325521932030267004512006381117370559877376} a^{13} - \frac{111062900300005938725544688183827519751421995}{541081380483007566751128001595279342639969344} a^{12} - \frac{358591043350058870707554222042026581322963245}{2164325521932030267004512006381117370559877376} a^{11} - \frac{144454346266962550218306743414843499012497649}{541081380483007566751128001595279342639969344} a^{10} - \frac{834453758646265967644089081784008428929482617}{2164325521932030267004512006381117370559877376} a^{9} - \frac{451496462019793570492799753070220760576322625}{2164325521932030267004512006381117370559877376} a^{8} - \frac{397520014138420230744993628845329607031198811}{1082162760966015133502256003190558685279938688} a^{7} + \frac{416800704894185571834555995648621678674135325}{2164325521932030267004512006381117370559877376} a^{6} + \frac{4714229228023850847317843025132899240964423}{33817586280187972921945500099704958914998084} a^{5} - \frac{464316912712700517698914493039605618493120403}{2164325521932030267004512006381117370559877376} a^{4} - \frac{25574385598644523786631696389199028330416323}{541081380483007566751128001595279342639969344} a^{3} + \frac{7880344111333073676960997160024675711740733}{33817586280187972921945500099704958914998084} a^{2} + \frac{3204346856515412407033512406687696186858595}{33817586280187972921945500099704958914998084} a - \frac{1545080046285207562823080055452733944261619}{8454396570046993230486375024926239728749521}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 509760612.569 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times A_4$ (as 20T14):
| A solvable group of order 60 |
| The 20 conjugacy class representatives for $C_5\times A_4$ |
| Character table for $C_5\times A_4$ |
Intermediate fields
| 4.0.4225.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | R | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | R | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||