Normalized defining polynomial
\( x^{20} - 5 x^{19} + 26 x^{18} - 81 x^{17} + 263 x^{16} - 593 x^{15} + 1335 x^{14} - 1936 x^{13} + 2256 x^{12} + 1477 x^{11} - 9342 x^{10} + 26305 x^{9} - 37870 x^{8} + 37170 x^{7} + 6725 x^{6} - 83653 x^{5} + 177709 x^{4} - 231346 x^{3} + 225474 x^{2} - 137631 x + 41491 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6138974057914386475157900390625=3^{10}\cdot 5^{10}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{15} a^{16} - \frac{2}{15} a^{15} - \frac{2}{15} a^{14} + \frac{2}{5} a^{13} - \frac{7}{15} a^{12} - \frac{1}{15} a^{11} + \frac{1}{5} a^{10} - \frac{2}{15} a^{9} - \frac{7}{15} a^{8} + \frac{1}{15} a^{7} - \frac{7}{15} a^{5} - \frac{4}{15} a^{4} + \frac{1}{5} a^{3} + \frac{4}{15} a^{2} - \frac{1}{3} a + \frac{4}{15}$, $\frac{1}{15} a^{17} - \frac{1}{15} a^{15} + \frac{2}{15} a^{14} - \frac{1}{3} a^{12} + \frac{1}{15} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{15} a^{8} + \frac{2}{15} a^{7} + \frac{1}{5} a^{6} + \frac{7}{15} a^{5} - \frac{1}{3} a^{4} - \frac{7}{15} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{8354107575} a^{18} + \frac{23710939}{928234175} a^{17} - \frac{16530958}{928234175} a^{16} - \frac{154019123}{928234175} a^{15} - \frac{33741131}{759464325} a^{14} - \frac{223905011}{759464325} a^{13} - \frac{33534694}{2784702525} a^{12} - \frac{2976961619}{8354107575} a^{11} - \frac{540301691}{1670821515} a^{10} - \frac{930180164}{2784702525} a^{9} + \frac{1365405416}{8354107575} a^{8} - \frac{2426448016}{8354107575} a^{7} - \frac{595325147}{1670821515} a^{6} + \frac{35951406}{84384925} a^{5} - \frac{3480624116}{8354107575} a^{4} - \frac{62228296}{1670821515} a^{3} - \frac{2150580107}{8354107575} a^{2} + \frac{597624107}{8354107575} a + \frac{2412501224}{8354107575}$, $\frac{1}{5086341342972686994720707914950825} a^{19} + \frac{251723493059020476759983}{5086341342972686994720707914950825} a^{18} - \frac{2174353525403695215600535224704}{67817884572969159929609438866011} a^{17} - \frac{452179112590947039103038520931}{19487897865795735611956735306325} a^{16} - \frac{160874765958908635829181813662339}{1017268268594537398944141582990165} a^{15} - \frac{7190254652962933687100325837582}{51377185282552393886067756716675} a^{14} - \frac{923125099127955743660204681591459}{5086341342972686994720707914950825} a^{13} - \frac{14283004645273606568907739343677}{175391080792161620507610617756925} a^{12} - \frac{487843296500117747429914654375793}{5086341342972686994720707914950825} a^{11} - \frac{102258492131934584143648348820737}{462394667542971544974609810450075} a^{10} - \frac{2413191830559035820046604772683083}{5086341342972686994720707914950825} a^{9} - \frac{129402504172883133040623556237246}{565149038108076332746745323883425} a^{8} + \frac{744106285590999484676864143622476}{1695447114324228998240235971650275} a^{7} - \frac{1110015607854456717148166667458306}{5086341342972686994720707914950825} a^{6} + \frac{902735415687503034469047253813432}{5086341342972686994720707914950825} a^{5} - \frac{170879717136737233751882810651774}{1695447114324228998240235971650275} a^{4} + \frac{842336732216806001085504328544456}{1695447114324228998240235971650275} a^{3} - \frac{98888444399485982659714170224792}{5086341342972686994720707914950825} a^{2} - \frac{647684745482070564233864433816089}{1695447114324228998240235971650275} a + \frac{112114180228814393358899268584443}{5086341342972686994720707914950825}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{42888313599281}{443715330654973575} a^{19} + \frac{59326944028577}{147905110218324525} a^{18} - \frac{320275703829502}{147905110218324525} a^{17} + \frac{293698848085067}{49301703406108175} a^{16} - \frac{8937566900405788}{443715330654973575} a^{15} + \frac{1599093722097094}{40337757332270325} a^{14} - \frac{918404524410863}{9860340681221635} a^{13} + \frac{9221677622460551}{88743066130994715} a^{12} - \frac{52312975825213423}{443715330654973575} a^{11} - \frac{37522416742729861}{147905110218324525} a^{10} + \frac{12604668517480697}{17748613226198943} a^{9} - \frac{845070572371436812}{443715330654973575} a^{8} + \frac{876416543745202118}{443715330654973575} a^{7} - \frac{238320418774658003}{147905110218324525} a^{6} - \frac{1006222003298799251}{443715330654973575} a^{5} + \frac{2934499512259845688}{443715330654973575} a^{4} - \frac{4989558997514662268}{443715330654973575} a^{3} + \frac{5360638210882002674}{443715330654973575} a^{2} - \frac{838349183816645342}{88743066130994715} a + \frac{544774709598063346}{147905110218324525} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10123076.9997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_5$ (as 20T8):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_2^2\times D_5$ |
| Character table for $C_2^2\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 5.5.12852225.1, 10.0.2477695311759375.1, 10.10.825898437253125.1, 10.0.495539062351875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 239 | Data not computed | ||||||