Normalized defining polynomial
\( x^{20} + 220 x^{18} + 20570 x^{16} + 1071400 x^{14} + 34223200 x^{12} + 694936000 x^{10} + 8985339000 x^{8} + 71939340000 x^{6} + 334312110000 x^{4} + 793881000000 x^{2} + 714492900000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6113193735657808322804901216256000000000000000=2^{55}\cdot 5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $194.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(880=2^{4}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{880}(1,·)$, $\chi_{880}(387,·)$, $\chi_{880}(641,·)$, $\chi_{880}(9,·)$, $\chi_{880}(843,·)$, $\chi_{880}(81,·)$, $\chi_{880}(787,·)$, $\chi_{880}(729,·)$, $\chi_{880}(89,·)$, $\chi_{880}(283,·)$, $\chi_{880}(523,·)$, $\chi_{880}(801,·)$, $\chi_{880}(227,·)$, $\chi_{880}(401,·)$, $\chi_{880}(489,·)$, $\chi_{880}(43,·)$, $\chi_{880}(547,·)$, $\chi_{880}(307,·)$, $\chi_{880}(169,·)$, $\chi_{880}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4}$, $\frac{1}{10} a^{5}$, $\frac{1}{10} a^{6}$, $\frac{1}{10} a^{7}$, $\frac{1}{100} a^{8}$, $\frac{1}{100} a^{9}$, $\frac{1}{1100} a^{10}$, $\frac{1}{3300} a^{11} - \frac{1}{300} a^{9} + \frac{1}{30} a^{7} - \frac{1}{30} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{99000} a^{12} + \frac{1}{2475} a^{10} - \frac{1}{450} a^{8} + \frac{1}{45} a^{6} - \frac{1}{90} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{297000} a^{13} + \frac{1}{7425} a^{11} - \frac{11}{2700} a^{9} + \frac{11}{270} a^{7} - \frac{1}{270} a^{5} - \frac{13}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{891000} a^{14} + \frac{1}{222750} a^{12} - \frac{1}{4050} a^{10} - \frac{17}{4050} a^{8} - \frac{19}{810} a^{6} + \frac{7}{405} a^{4} + \frac{2}{9} a^{2}$, $\frac{1}{2673000} a^{15} + \frac{1}{668250} a^{13} - \frac{1}{12150} a^{11} - \frac{17}{12150} a^{9} + \frac{31}{1215} a^{7} - \frac{67}{2430} a^{5} + \frac{2}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{80190000} a^{16} + \frac{1}{2004750} a^{14} - \frac{1}{200475} a^{12} + \frac{47}{400950} a^{10} + \frac{53}{72900} a^{8} - \frac{31}{729} a^{6} - \frac{1}{162} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{240570000} a^{17} + \frac{1}{6014250} a^{15} - \frac{1}{601425} a^{13} + \frac{47}{1202850} a^{11} + \frac{53}{218700} a^{9} - \frac{31}{2187} a^{7} + \frac{38}{1215} a^{5} + \frac{7}{27} a^{3}$, $\frac{1}{529706761641090000} a^{18} - \frac{597229819}{264853380820545000} a^{16} - \frac{10895752973}{26485338082054500} a^{14} - \frac{1025327927}{211882704656436} a^{12} + \frac{1914787747393}{5297067616410900} a^{10} - \frac{1126764777323}{240775800745950} a^{8} - \frac{15368076364}{535057334991} a^{6} - \frac{14073370553}{594508149990} a^{4} - \frac{2193663118}{6605646111} a^{2} - \frac{321743316}{733960679}$, $\frac{1}{1589120284923270000} a^{19} - \frac{597229819}{794560142461635000} a^{17} - \frac{10895752973}{79456014246163500} a^{15} - \frac{1025327927}{635648113969308} a^{13} + \frac{1914787747393}{15891202849232700} a^{11} + \frac{2561986460273}{1444654804475700} a^{9} - \frac{15368076364}{1605172004973} a^{7} - \frac{14073370553}{1783524449970} a^{5} - \frac{8799309229}{19816938333} a^{3} - \frac{1055703995}{2201882037} a$
Class group and class number
$C_{2}\times C_{9682100}$, which has order $19364200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14452469.589232503 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.30976000.4, \(\Q(\zeta_{11})^+\), 10.10.21950349414400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||