Properties

Label 20.0.60921273024...9061.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{10}\cdot 73^{2}\cdot 13921^{2}\cdot 99901$
Root discriminant $12.28$
Ramified primes $3, 73, 13921, 99901$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1045

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 32, -84, 158, -214, 201, -109, -8, 87, -107, 77, -12, -48, 56, -16, -17, 15, -1, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - x^18 + 15*x^17 - 17*x^16 - 16*x^15 + 56*x^14 - 48*x^13 - 12*x^12 + 77*x^11 - 107*x^10 + 87*x^9 - 8*x^8 - 109*x^7 + 201*x^6 - 214*x^5 + 158*x^4 - 84*x^3 + 32*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - x^18 + 15*x^17 - 17*x^16 - 16*x^15 + 56*x^14 - 48*x^13 - 12*x^12 + 77*x^11 - 107*x^10 + 87*x^9 - 8*x^8 - 109*x^7 + 201*x^6 - 214*x^5 + 158*x^4 - 84*x^3 + 32*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - x^{18} + 15 x^{17} - 17 x^{16} - 16 x^{15} + 56 x^{14} - 48 x^{13} - 12 x^{12} + 77 x^{11} - 107 x^{10} + 87 x^{9} - 8 x^{8} - 109 x^{7} + 201 x^{6} - 214 x^{5} + 158 x^{4} - 84 x^{3} + 32 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6092127302465063639061=3^{10}\cdot 73^{2}\cdot 13921^{2}\cdot 99901\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 73, 13921, 99901$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{32023} a^{19} + \frac{5317}{32023} a^{18} + \frac{10130}{32023} a^{17} - \frac{3094}{32023} a^{16} - \frac{275}{32023} a^{15} + \frac{10042}{32023} a^{14} + \frac{9132}{32023} a^{13} + \frac{3301}{32023} a^{12} + \frac{12704}{32023} a^{11} - \frac{15196}{32023} a^{10} + \frac{15248}{32023} a^{9} + \frac{5188}{32023} a^{8} - \frac{3674}{32023} a^{7} - \frac{11759}{32023} a^{6} + \frac{15263}{32023} a^{5} - \frac{11382}{32023} a^{4} + \frac{3411}{32023} a^{3} - \frac{10605}{32023} a^{2} + \frac{5958}{32023} a - \frac{6218}{32023}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{11098}{1033} a^{19} - \frac{26851}{1033} a^{18} - \frac{29640}{1033} a^{17} + \frac{154658}{1033} a^{16} - \frac{87240}{1033} a^{15} - \frac{263537}{1033} a^{14} + \frac{468288}{1033} a^{13} - \frac{183688}{1033} a^{12} - \frac{317144}{1033} a^{11} + \frac{656261}{1033} a^{10} - \frac{718592}{1033} a^{9} + \frac{434996}{1033} a^{8} + \frac{270137}{1033} a^{7} - \frac{1089208}{1033} a^{6} + \frac{1490119}{1033} a^{5} - \frac{1282083}{1033} a^{4} + \frac{771611}{1033} a^{3} - \frac{324830}{1033} a^{2} + \frac{90458}{1033} a - \frac{12261}{1033} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 870.501962188 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1045:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 29491200
The 702 conjugacy class representatives for t20n1045 are not computed
Character table for t20n1045 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 10.0.246944619.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$73$$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.4.0.1$x^{4} - x + 13$$1$$4$$0$$C_4$$[\ ]^{4}$
73.4.0.1$x^{4} - x + 13$$1$$4$$0$$C_4$$[\ ]^{4}$
73.4.0.1$x^{4} - x + 13$$1$$4$$0$$C_4$$[\ ]^{4}$
73.4.2.1$x^{4} + 1533 x^{2} + 644809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13921Data not computed
99901Data not computed