Normalized defining polynomial
\( x^{20} - 9 x^{19} + 44 x^{18} - 151 x^{17} + 402 x^{16} - 891 x^{15} + 1714 x^{14} - 2897 x^{13} + 4334 x^{12} - 5781 x^{11} + 6874 x^{10} - 7262 x^{9} + 6798 x^{8} - 5580 x^{7} + 3943 x^{6} - 2365 x^{5} + 1168 x^{4} - 436 x^{3} + 110 x^{2} - 16 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(609150100783522373289841=11^{18}\cdot 331^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{89} a^{18} - \frac{3}{89} a^{17} + \frac{17}{89} a^{16} - \frac{22}{89} a^{15} + \frac{28}{89} a^{14} + \frac{9}{89} a^{13} + \frac{3}{89} a^{12} - \frac{23}{89} a^{11} - \frac{14}{89} a^{10} + \frac{38}{89} a^{9} + \frac{19}{89} a^{8} - \frac{14}{89} a^{7} - \frac{43}{89} a^{6} - \frac{16}{89} a^{5} - \frac{38}{89} a^{4} + \frac{43}{89} a^{3} - \frac{12}{89} a^{2} - \frac{5}{89} a + \frac{10}{89}$, $\frac{1}{1174316076473} a^{19} - \frac{2723049969}{1174316076473} a^{18} - \frac{507251159711}{1174316076473} a^{17} - \frac{301090537734}{1174316076473} a^{16} - \frac{476797650147}{1174316076473} a^{15} - \frac{58230803663}{1174316076473} a^{14} - \frac{358761609059}{1174316076473} a^{13} + \frac{108975730191}{1174316076473} a^{12} - \frac{307130121305}{1174316076473} a^{11} - \frac{298112201976}{1174316076473} a^{10} + \frac{437769990031}{1174316076473} a^{9} - \frac{173113282856}{1174316076473} a^{8} + \frac{145759275184}{1174316076473} a^{7} - \frac{368283269739}{1174316076473} a^{6} - \frac{498563275296}{1174316076473} a^{5} + \frac{249465308890}{1174316076473} a^{4} + \frac{408478290049}{1174316076473} a^{3} + \frac{274056358089}{1174316076473} a^{2} - \frac{584376979517}{1174316076473} a + \frac{559917097408}{1174316076473}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2262341817052}{1174316076473} a^{19} - \frac{19238631458105}{1174316076473} a^{18} + \frac{89843679674538}{1174316076473} a^{17} - \frac{295712540486335}{1174316076473} a^{16} + \frac{756513160801002}{1174316076473} a^{15} - \frac{1619734381604511}{1174316076473} a^{14} + \frac{3020707784286304}{1174316076473} a^{13} - \frac{4940180373760608}{1174316076473} a^{12} + \frac{7137540258720222}{1174316076473} a^{11} - \frac{9180620688835956}{1174316076473} a^{10} + \frac{10476682414332619}{1174316076473} a^{9} - \frac{10556558175495978}{1174316076473} a^{8} + \frac{9364826780195900}{1174316076473} a^{7} - \frac{7187023385803427}{1174316076473} a^{6} + \frac{4646500118670624}{1174316076473} a^{5} - \frac{2496444059821590}{1174316076473} a^{4} + \frac{1046555416140498}{1174316076473} a^{3} - \frac{274367121327883}{1174316076473} a^{2} + \frac{32383954584233}{1174316076473} a + \frac{200766432524}{1174316076473} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27553.4171511 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T86):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{11})\), 10.8.70952789611.1, 10.2.780480685721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 331 | Data not computed | ||||||