Normalized defining polynomial
\( x^{20} - 9 x^{19} + 34 x^{18} - 70 x^{17} + 84 x^{16} - 58 x^{15} + 39 x^{14} - 114 x^{13} + 339 x^{12} - 696 x^{11} + 1071 x^{10} - 1308 x^{9} + 1314 x^{8} - 1095 x^{7} + 759 x^{6} - 437 x^{5} + 207 x^{4} - 80 x^{3} + 25 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60020399738333350163961=3^{14}\cdot 17^{6}\cdot 151^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{17} + \frac{1}{9} a^{15} + \frac{2}{9} a^{14} + \frac{4}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{3} a^{11} + \frac{1}{9} a^{10} + \frac{2}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{1}{9}$, $\frac{1}{2563857} a^{19} + \frac{61048}{2563857} a^{18} - \frac{155435}{2563857} a^{17} - \frac{135743}{2563857} a^{16} + \frac{34795}{2563857} a^{15} - \frac{674323}{2563857} a^{14} - \frac{99767}{854619} a^{13} - \frac{672940}{2563857} a^{12} + \frac{959914}{2563857} a^{11} + \frac{552001}{2563857} a^{10} + \frac{67166}{854619} a^{9} - \frac{517919}{2563857} a^{8} - \frac{1106323}{2563857} a^{7} + \frac{321254}{2563857} a^{6} + \frac{338438}{854619} a^{5} - \frac{298769}{854619} a^{4} + \frac{850865}{2563857} a^{3} + \frac{114707}{2563857} a^{2} - \frac{88000}{284873} a + \frac{332617}{2563857}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4175659}{2563857} a^{19} + \frac{36303559}{2563857} a^{18} - \frac{43767647}{854619} a^{17} + \frac{255359777}{2563857} a^{16} - \frac{281727350}{2563857} a^{15} + \frac{166993343}{2563857} a^{14} - \frac{113052934}{2563857} a^{13} + \frac{47929394}{284873} a^{12} - \frac{1282960594}{2563857} a^{11} + \frac{2549790640}{2563857} a^{10} - \frac{3775140155}{2563857} a^{9} + \frac{1474270033}{854619} a^{8} - \frac{4242358217}{2563857} a^{7} + \frac{3336576953}{2563857} a^{6} - \frac{2151642448}{2563857} a^{5} + \frac{1122491759}{2563857} a^{4} - \frac{154590352}{854619} a^{3} + \frac{146878438}{2563857} a^{2} - \frac{36813647}{2563857} a + \frac{823888}{284873} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3551.87507638 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n368 are not computed |
| Character table for t20n368 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.3.23103.1, 10.2.81663537177.1, 10.4.244990611531.1, 10.0.1601245827.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $151$ | 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |