Normalized defining polynomial
\( x^{20} - 8 x^{19} + 24 x^{18} - 18 x^{17} - 42 x^{16} - 168 x^{15} + 2166 x^{14} - 9680 x^{13} + 28906 x^{12} - 66286 x^{11} + 123592 x^{10} - 193668 x^{9} + 260217 x^{8} - 302858 x^{7} + 307800 x^{6} - 274640 x^{5} + 211730 x^{4} - 133196 x^{3} + 61838 x^{2} - 17836 x + 2401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5993774335551541600171439685632=2^{20}\cdot 89417^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{14} a^{17} - \frac{1}{14} a^{16} + \frac{3}{14} a^{15} + \frac{3}{14} a^{14} + \frac{3}{14} a^{11} + \frac{1}{14} a^{10} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} - \frac{1}{2} a^{7} + \frac{1}{14} a^{6} - \frac{1}{14} a^{5} - \frac{3}{14} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{98} a^{18} - \frac{1}{98} a^{17} + \frac{17}{98} a^{16} + \frac{3}{98} a^{15} - \frac{3}{14} a^{14} - \frac{3}{14} a^{13} + \frac{5}{49} a^{12} - \frac{3}{49} a^{11} + \frac{3}{98} a^{10} - \frac{17}{98} a^{9} + \frac{3}{7} a^{8} - \frac{10}{49} a^{7} + \frac{17}{49} a^{6} + \frac{2}{49} a^{5} - \frac{39}{98} a^{4} - \frac{23}{98} a^{3} - \frac{13}{98} a^{2} - \frac{1}{14} a$, $\frac{1}{187296575725738694723512109574238} a^{19} + \frac{358116187137018585379573275887}{93648287862869347361756054787119} a^{18} - \frac{2001474861240788774578659059931}{93648287862869347361756054787119} a^{17} - \frac{21360928832095554105241242886119}{93648287862869347361756054787119} a^{16} - \frac{1753374623001538689770485824219}{26756653675105527817644587082034} a^{15} + \frac{6467985382372851881982856069257}{26756653675105527817644587082034} a^{14} - \frac{8661545159404774183239437164135}{93648287862869347361756054787119} a^{13} + \frac{39394063658152754809027907829917}{187296575725738694723512109574238} a^{12} - \frac{23298225048636805016772496122406}{93648287862869347361756054787119} a^{11} + \frac{538146808857924087195648887595}{3020912511705462818121163057649} a^{10} + \frac{443237075403299836220612843141}{1911189548221823415546041934431} a^{9} + \frac{30294355373577323700320124621713}{187296575725738694723512109574238} a^{8} + \frac{7406679278631923787738163584821}{17026961429612608611228373597658} a^{7} - \frac{3041767944520203159844617876089}{187296575725738694723512109574238} a^{6} + \frac{1243397735556537694501395602189}{3533897655202616881575700180646} a^{5} + \frac{33299853244826671590974319648955}{187296575725738694723512109574238} a^{4} + \frac{5868470561186291464484375854461}{17026961429612608611228373597658} a^{3} + \frac{12661017779688400632162381236257}{26756653675105527817644587082034} a^{2} - \frac{19343752727615662998727318477}{61651275749091077920840062401} a + \frac{15074530641025049820530726357}{273027078317403345078005990633}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10284451.3167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.89417.1, 10.6.8187289486336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 89417 | Data not computed | ||||||