Normalized defining polynomial
\( x^{20} - 11 x^{18} + 40 x^{16} - 49 x^{14} - 125 x^{12} + 829 x^{10} - 500 x^{8} - 784 x^{6} + 2560 x^{4} - 2816 x^{2} + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(597130874990690290159845376=2^{20}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{12} - \frac{1}{4} a^{10} - \frac{5}{28} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{2}{7}$, $\frac{1}{56} a^{13} - \frac{1}{8} a^{11} - \frac{1}{2} a^{9} + \frac{23}{56} a^{7} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{7} a$, $\frac{1}{112} a^{14} + \frac{1}{112} a^{12} - \frac{1}{4} a^{10} - \frac{33}{112} a^{8} + \frac{23}{112} a^{6} + \frac{7}{16} a^{4} + \frac{1}{14} a^{2} - \frac{3}{7}$, $\frac{1}{224} a^{15} + \frac{1}{224} a^{13} - \frac{1}{8} a^{11} + \frac{79}{224} a^{9} + \frac{23}{224} a^{7} - \frac{9}{32} a^{5} + \frac{1}{28} a^{3} + \frac{2}{7} a$, $\frac{1}{693056} a^{16} + \frac{1489}{693056} a^{14} - \frac{83}{173264} a^{12} - \frac{64657}{693056} a^{10} + \frac{117799}{693056} a^{8} - \frac{210671}{693056} a^{6} - \frac{5305}{86632} a^{4} + \frac{1489}{10829} a^{2} - \frac{3090}{10829}$, $\frac{1}{1386112} a^{17} + \frac{1489}{1386112} a^{15} - \frac{83}{346528} a^{13} - \frac{64657}{1386112} a^{11} + \frac{117799}{1386112} a^{9} + \frac{482385}{1386112} a^{7} - \frac{5305}{173264} a^{5} - \frac{4670}{10829} a^{3} - \frac{1545}{10829} a$, $\frac{1}{47127808} a^{18} + \frac{25}{47127808} a^{16} - \frac{513}{11781952} a^{14} + \frac{520399}{47127808} a^{12} - \frac{22350817}{47127808} a^{10} + \frac{1486665}{47127808} a^{8} + \frac{12751}{105196} a^{6} + \frac{37325}{184093} a^{4} + \frac{13791}{56644} a^{2} - \frac{78814}{184093}$, $\frac{1}{94255616} a^{19} + \frac{25}{94255616} a^{17} - \frac{513}{23563904} a^{15} + \frac{520399}{94255616} a^{13} - \frac{22350817}{94255616} a^{11} - \frac{45641143}{94255616} a^{9} + \frac{12751}{210392} a^{7} - \frac{73384}{184093} a^{5} + \frac{13791}{113288} a^{3} + \frac{105279}{368186} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2213}{517888} a^{19} - \frac{22773}{517888} a^{17} + \frac{36209}{258944} a^{15} - \frac{57237}{517888} a^{13} - \frac{319155}{517888} a^{11} + \frac{1618343}{517888} a^{9} + \frac{11603}{258944} a^{7} - \frac{217065}{64736} a^{5} + \frac{37189}{4046} a^{3} - \frac{1679}{289} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72823.8378174 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{119}) \), \(\Q(i, \sqrt{119})\), 5.1.14161.1 x5, 10.0.23863536599.2, 10.0.205346735104.4 x5, 10.2.24436261477376.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |