Normalized defining polynomial
\( x^{20} + 44 x^{18} + 1001 x^{16} + 14036 x^{14} + 132880 x^{12} + 855536 x^{10} + 3758139 x^{8} + 10624284 x^{6} + 18612099 x^{4} + 15877620 x^{2} + 7144929 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59699157574783284402391613440000000000=2^{40}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(131,·)$, $\chi_{440}(199,·)$, $\chi_{440}(201,·)$, $\chi_{440}(371,·)$, $\chi_{440}(399,·)$, $\chi_{440}(81,·)$, $\chi_{440}(211,·)$, $\chi_{440}(149,·)$, $\chi_{440}(279,·)$, $\chi_{440}(349,·)$, $\chi_{440}(159,·)$, $\chi_{440}(401,·)$, $\chi_{440}(361,·)$, $\chi_{440}(171,·)$, $\chi_{440}(109,·)$, $\chi_{440}(29,·)$, $\chi_{440}(51,·)$, $\chi_{440}(119,·)$, $\chi_{440}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{33} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{99} a^{12} - \frac{1}{99} a^{10} + \frac{1}{9} a^{8} - \frac{2}{9} a^{6} + \frac{2}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{297} a^{13} - \frac{1}{297} a^{11} - \frac{8}{27} a^{9} - \frac{11}{27} a^{7} - \frac{7}{27} a^{5} + \frac{7}{27} a^{3}$, $\frac{1}{20493} a^{14} - \frac{19}{20493} a^{12} + \frac{821}{20493} a^{10} - \frac{245}{1863} a^{8} - \frac{916}{1863} a^{6} + \frac{295}{1863} a^{4} + \frac{76}{207} a^{2} + \frac{5}{23}$, $\frac{1}{61479} a^{15} - \frac{19}{61479} a^{13} + \frac{821}{61479} a^{11} - \frac{2108}{5589} a^{9} - \frac{2779}{5589} a^{7} + \frac{2158}{5589} a^{5} - \frac{131}{621} a^{3} + \frac{5}{69} a$, $\frac{1}{184437} a^{16} - \frac{1}{184437} a^{14} + \frac{479}{184437} a^{12} + \frac{8357}{184437} a^{10} - \frac{1600}{16767} a^{8} + \frac{8026}{16767} a^{6} + \frac{17}{69} a^{4} - \frac{50}{207} a^{2} + \frac{10}{23}$, $\frac{1}{553311} a^{17} - \frac{1}{553311} a^{15} + \frac{479}{553311} a^{13} + \frac{8357}{553311} a^{11} - \frac{18367}{50301} a^{9} + \frac{24793}{50301} a^{7} + \frac{17}{207} a^{5} + \frac{157}{621} a^{3} + \frac{11}{23} a$, $\frac{1}{968833717219090899} a^{18} + \frac{1296580422851}{968833717219090899} a^{16} - \frac{7945269691948}{968833717219090899} a^{14} + \frac{1689815945459354}{968833717219090899} a^{12} + \frac{41194701074032159}{968833717219090899} a^{10} - \frac{27479567702638757}{88075792474462809} a^{8} - \frac{1102809085637368}{9786199163829201} a^{6} - \frac{386984218285447}{1087355462647689} a^{4} + \frac{18052396639025}{120817273627521} a^{2} - \frac{1904214646}{13424141514169}$, $\frac{1}{2906501151657272697} a^{19} + \frac{1296580422851}{2906501151657272697} a^{17} - \frac{7945269691948}{2906501151657272697} a^{15} + \frac{1689815945459354}{2906501151657272697} a^{13} + \frac{41194701074032159}{2906501151657272697} a^{11} - \frac{27479567702638757}{264227377423388427} a^{9} - \frac{1102809085637368}{29358597491487603} a^{7} - \frac{1474339680933136}{3262066387943067} a^{5} - \frac{102764876988496}{362451820882563} a^{3} + \frac{4474079099841}{13424141514169} a$
Class group and class number
$C_{2}\times C_{11346}$, which has order $22692$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1589230.00872 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{-5}, \sqrt{22})\), \(\Q(\zeta_{11})^+\), 10.0.685948419200000.1, 10.10.77265229938688.1, 10.0.241453843558400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||