Normalized defining polynomial
\( x^{20} + 4 x^{18} + 49 x^{16} + 108 x^{14} + 300 x^{12} - 10 x^{10} + 301 x^{8} - 116 x^{6} + 9 x^{4} + 278 x^{2} + 100 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5969915757478328440239161344=2^{30}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{6}$, $\frac{1}{224} a^{16} + \frac{3}{112} a^{14} + \frac{5}{56} a^{12} + \frac{1}{16} a^{10} + \frac{3}{56} a^{8} - \frac{1}{4} a^{6} - \frac{79}{224} a^{4} - \frac{1}{2} a^{3} + \frac{31}{112} a^{2} + \frac{17}{56}$, $\frac{1}{2240} a^{17} - \frac{1}{448} a^{16} + \frac{3}{1120} a^{15} - \frac{3}{224} a^{14} + \frac{19}{560} a^{13} + \frac{9}{112} a^{12} - \frac{3}{32} a^{11} - \frac{1}{32} a^{10} + \frac{23}{112} a^{9} - \frac{3}{112} a^{8} - \frac{1}{4} a^{6} - \frac{79}{2240} a^{5} - \frac{145}{448} a^{4} + \frac{143}{1120} a^{3} + \frac{81}{224} a^{2} - \frac{151}{560} a + \frac{39}{112}$, $\frac{1}{4500684160} a^{18} - \frac{6921039}{4500684160} a^{16} + \frac{13504423}{2250342080} a^{14} + \frac{1493907}{19568192} a^{12} - \frac{1}{8} a^{11} - \frac{50979953}{450068416} a^{10} - \frac{1}{4} a^{9} - \frac{3563395}{225034208} a^{8} + \frac{783174481}{4500684160} a^{6} + \frac{1}{8} a^{5} + \frac{1206539721}{4500684160} a^{4} - \frac{1}{4} a^{3} + \frac{764709783}{2250342080} a^{2} - \frac{1}{2} a + \frac{93641335}{225034208}$, $\frac{1}{9001368320} a^{19} - \frac{1}{9001368320} a^{18} + \frac{1115897}{9001368320} a^{17} + \frac{6921039}{9001368320} a^{16} - \frac{243677529}{4500684160} a^{15} + \frac{267788337}{4500684160} a^{14} - \frac{530327}{27954560} a^{13} - \frac{1493907}{39136384} a^{12} + \frac{5278599}{900136832} a^{11} - \frac{61537151}{900136832} a^{10} + \frac{13842615}{64295488} a^{9} - \frac{24565881}{450068416} a^{8} - \frac{341996559}{9001368320} a^{7} + \frac{1467167599}{9001368320} a^{6} + \frac{571621777}{9001368320} a^{5} + \frac{2168973399}{9001368320} a^{4} + \frac{788820591}{4500684160} a^{3} + \frac{1485632297}{4500684160} a^{2} - \frac{106481523}{321477440} a + \frac{131392873}{450068416}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 331105.28715 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-2}, \sqrt{-11})\), 5.1.937024.1 x5, 10.0.7024111812608.2, 10.2.77265229938688.2 x5, 10.0.9658153742336.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $11$ | 11.10.9.6 | $x^{10} + 216513$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.6 | $x^{10} + 216513$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |