Normalized defining polynomial
\( x^{20} - 8 x^{19} + 22 x^{18} - 16 x^{17} + 7 x^{16} - 264 x^{15} + 1048 x^{14} - 1674 x^{13} + 1331 x^{12} - 2446 x^{11} + 8590 x^{10} - 14490 x^{9} + 10032 x^{8} - 5132 x^{7} + 26778 x^{6} - 70730 x^{5} + 91781 x^{4} - 67450 x^{3} + 28094 x^{2} - 5980 x + 529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5969915757478328440239161344=2^{30}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3177264163715470389158282147} a^{19} - \frac{233359433245262983512987089}{3177264163715470389158282147} a^{18} - \frac{474790220912144945397895245}{3177264163715470389158282147} a^{17} + \frac{720789205931755020012080888}{3177264163715470389158282147} a^{16} - \frac{480034203956468188675436863}{3177264163715470389158282147} a^{15} + \frac{1455009824497072840985465546}{3177264163715470389158282147} a^{14} - \frac{1561117036708462137177184470}{3177264163715470389158282147} a^{13} + \frac{602601589199102281544903722}{3177264163715470389158282147} a^{12} + \frac{668948483468234794778432483}{3177264163715470389158282147} a^{11} + \frac{931228831183024112298131831}{3177264163715470389158282147} a^{10} - \frac{887064271235853923954261413}{3177264163715470389158282147} a^{9} + \frac{20800565887069360764475401}{138141920161542190832968789} a^{8} - \frac{35821784425254039591695358}{3177264163715470389158282147} a^{7} + \frac{1126722848908450234995136295}{3177264163715470389158282147} a^{6} - \frac{507289641603212982446303909}{3177264163715470389158282147} a^{5} - \frac{178389620243353485066607775}{3177264163715470389158282147} a^{4} - \frac{151592447455195165633450735}{3177264163715470389158282147} a^{3} + \frac{1052705059059540883667317238}{3177264163715470389158282147} a^{2} - \frac{457395286438301865408261820}{3177264163715470389158282147} a + \frac{5699978149499380496042384}{138141920161542190832968789}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 159636.716542 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.2414538435584.1, 10.4.2414538435584.1, 10.4.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||