Normalized defining polynomial
\( x^{20} - 8 x^{19} + 52 x^{18} - 244 x^{17} + 937 x^{16} - 2998 x^{15} + 8069 x^{14} - 18569 x^{13} + 36392 x^{12} - 59462 x^{11} + 78193 x^{10} - 84235 x^{9} + 79306 x^{8} - 66389 x^{7} + 51585 x^{6} - 30332 x^{5} + 17988 x^{4} - 7417 x^{3} + 3436 x^{2} - 817 x + 361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5938531341125635825289072265625=5^{10}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{12} + \frac{3}{7} a^{11} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} - \frac{1}{7} a$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{13} + \frac{3}{7} a^{12} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{3}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{2}$, $\frac{1}{161} a^{17} - \frac{10}{161} a^{16} - \frac{9}{161} a^{15} - \frac{8}{161} a^{14} + \frac{5}{23} a^{13} + \frac{10}{161} a^{12} - \frac{78}{161} a^{11} - \frac{15}{161} a^{10} - \frac{7}{23} a^{9} + \frac{8}{23} a^{8} - \frac{12}{161} a^{7} - \frac{8}{161} a^{6} - \frac{31}{161} a^{5} - \frac{40}{161} a^{4} - \frac{60}{161} a^{3} - \frac{41}{161} a^{2} + \frac{58}{161} a + \frac{51}{161}$, $\frac{1}{68747} a^{18} + \frac{19}{68747} a^{17} + \frac{73}{2989} a^{16} + \frac{254}{9821} a^{15} + \frac{838}{68747} a^{14} + \frac{1073}{9821} a^{13} - \frac{19177}{68747} a^{12} - \frac{606}{2989} a^{11} - \frac{24749}{68747} a^{10} - \frac{8}{68747} a^{9} - \frac{1222}{9821} a^{8} - \frac{12822}{68747} a^{7} - \frac{30554}{68747} a^{6} + \frac{2271}{9821} a^{5} + \frac{16950}{68747} a^{4} + \frac{31776}{68747} a^{3} + \frac{14187}{68747} a^{2} - \frac{34124}{68747} a - \frac{10343}{68747}$, $\frac{1}{4055949116173286095073822147013581} a^{19} - \frac{18485887718179559677406873674}{4055949116173286095073822147013581} a^{18} - \frac{11799988188818883422507958679540}{4055949116173286095073822147013581} a^{17} + \frac{4090581563829357436053358858117}{176345613746664612829296615087547} a^{16} - \frac{5429852842620975413577926098820}{176345613746664612829296615087547} a^{15} + \frac{216002068311522293941642681229861}{4055949116173286095073822147013581} a^{14} + \frac{1907631683863629254442566796629316}{4055949116173286095073822147013581} a^{13} + \frac{282634369733818866901117998513633}{4055949116173286095073822147013581} a^{12} + \frac{1219741205590042175695056368121826}{4055949116173286095073822147013581} a^{11} - \frac{321332004570907568381778088086720}{4055949116173286095073822147013581} a^{10} - \frac{667261910131395412098613739517732}{4055949116173286095073822147013581} a^{9} + \frac{227644479769277742926884509602063}{4055949116173286095073822147013581} a^{8} - \frac{104840800726295261167995965267570}{213471006114383478688095902474399} a^{7} + \frac{1734037508281952484863638206710369}{4055949116173286095073822147013581} a^{6} - \frac{96699398124268563074709846781485}{213471006114383478688095902474399} a^{5} - \frac{989884321000473063958134001804381}{4055949116173286095073822147013581} a^{4} + \frac{1484579125448610750404803239046005}{4055949116173286095073822147013581} a^{3} - \frac{115401595132587598386004931648095}{579421302310469442153403163859083} a^{2} - \frac{8589090410074720395966260122976}{25192230535237801832756659298221} a - \frac{53932343907355367471826213467285}{213471006114383478688095902474399}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 892472.509302 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-239}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1195}) \), \(\Q(\sqrt{5}, \sqrt{-239})\), 5.1.57121.1 x5, 10.0.779811265199.1, 10.2.10196277003125.1 x5, 10.0.2436910203746875.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 239 | Data not computed | ||||||