Properties

Label 20.0.58966631474...4113.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{5}\cdot 11^{17}\cdot 21911^{2}$
Root discriminant $27.45$
Ramified primes $3, 11, 21911$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T427

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![121, -363, 726, -968, 1452, -1947, 2453, -2409, 2266, -2024, 1837, -1441, 1012, -671, 429, -252, 126, -56, 21, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 21*x^18 - 56*x^17 + 126*x^16 - 252*x^15 + 429*x^14 - 671*x^13 + 1012*x^12 - 1441*x^11 + 1837*x^10 - 2024*x^9 + 2266*x^8 - 2409*x^7 + 2453*x^6 - 1947*x^5 + 1452*x^4 - 968*x^3 + 726*x^2 - 363*x + 121)
 
gp: K = bnfinit(x^20 - 6*x^19 + 21*x^18 - 56*x^17 + 126*x^16 - 252*x^15 + 429*x^14 - 671*x^13 + 1012*x^12 - 1441*x^11 + 1837*x^10 - 2024*x^9 + 2266*x^8 - 2409*x^7 + 2453*x^6 - 1947*x^5 + 1452*x^4 - 968*x^3 + 726*x^2 - 363*x + 121, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 21 x^{18} - 56 x^{17} + 126 x^{16} - 252 x^{15} + 429 x^{14} - 671 x^{13} + 1012 x^{12} - 1441 x^{11} + 1837 x^{10} - 2024 x^{9} + 2266 x^{8} - 2409 x^{7} + 2453 x^{6} - 1947 x^{5} + 1452 x^{4} - 968 x^{3} + 726 x^{2} - 363 x + 121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(58966631474860149560041954113=3^{5}\cdot 11^{17}\cdot 21911^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 21911$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{1}{11} a^{12} + \frac{5}{11} a^{11} + \frac{1}{11} a^{10}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{14} + \frac{4}{11} a^{13} - \frac{1}{11} a^{12} - \frac{2}{11} a^{11} - \frac{5}{11} a^{10}$, $\frac{1}{11} a^{17} + \frac{2}{11} a^{14} - \frac{5}{11} a^{13} + \frac{5}{11} a^{12} + \frac{4}{11} a^{11} + \frac{4}{11} a^{10}$, $\frac{1}{253} a^{18} + \frac{10}{253} a^{17} - \frac{8}{253} a^{16} - \frac{4}{253} a^{15} - \frac{82}{253} a^{14} - \frac{49}{253} a^{13} + \frac{101}{253} a^{12} + \frac{63}{253} a^{11} - \frac{3}{253} a^{10} - \frac{3}{23} a^{9} - \frac{3}{23} a^{8} - \frac{10}{23} a^{7} - \frac{8}{23} a^{6} + \frac{2}{23} a^{5} - \frac{4}{23} a^{4} + \frac{2}{23} a^{3} - \frac{6}{23} a - \frac{7}{23}$, $\frac{1}{8257662653319407647} a^{19} - \frac{15129665941831352}{8257662653319407647} a^{18} + \frac{307937174539297563}{8257662653319407647} a^{17} + \frac{337116253073430345}{8257662653319407647} a^{16} - \frac{60849428439787419}{8257662653319407647} a^{15} + \frac{60413352567549066}{359028811013887289} a^{14} - \frac{753737172435235107}{8257662653319407647} a^{13} + \frac{1395619914913124266}{8257662653319407647} a^{12} - \frac{1815421472035088999}{8257662653319407647} a^{11} + \frac{2770039147724697864}{8257662653319407647} a^{10} + \frac{6059397349749759}{750696604847218877} a^{9} - \frac{126829525476524320}{750696604847218877} a^{8} - \frac{15788179799163409}{750696604847218877} a^{7} - \frac{12573180334477183}{750696604847218877} a^{6} - \frac{333742357503325287}{750696604847218877} a^{5} + \frac{104131541873091439}{750696604847218877} a^{4} - \frac{355044471516654510}{750696604847218877} a^{3} - \frac{25607262187719558}{750696604847218877} a^{2} - \frac{227773334723317135}{750696604847218877} a + \frac{260032406009559489}{750696604847218877}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1531449.0983 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T427:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 136 conjugacy class representatives for t20n427 are not computed
Character table for t20n427 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.4696817441591.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ $20$ R $20$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ $20$ $20$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.5.0.1$x^{5} - x + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
3.5.0.1$x^{5} - x + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
3.10.5.2$x^{10} - 81 x^{2} + 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
21911Data not computed