Normalized defining polynomial
\( x^{20} + 2 x^{18} - 7 x^{17} + 42 x^{16} + 29 x^{15} + 227 x^{14} - 720 x^{13} - 23 x^{12} + 435 x^{11} - 737 x^{10} + 3130 x^{9} + 194 x^{8} - 8170 x^{7} + 7368 x^{6} + 284 x^{5} - 6599 x^{4} + 4853 x^{3} + 1909 x^{2} - 2420 x + 509 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5886488028495486698036707508557=61^{4}\cdot 397^{7}\cdot 523^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397, 523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5241987510967920338128344116009602198778623} a^{19} + \frac{115793908556977239786873386109205123964232}{5241987510967920338128344116009602198778623} a^{18} - \frac{66853851499520062310288958986512176502333}{476544319178901848920758556000872927161693} a^{17} + \frac{2295673575862232029033468859386015996947699}{5241987510967920338128344116009602198778623} a^{16} - \frac{4205181285722780202202717090262639669000}{32159432582625278148026651018463817170421} a^{15} + \frac{2121088024724482098813565488446269264822781}{5241987510967920338128344116009602198778623} a^{14} - \frac{1252646980359463653441941139223538268698995}{5241987510967920338128344116009602198778623} a^{13} + \frac{930916348449346648869680744649238326955143}{5241987510967920338128344116009602198778623} a^{12} - \frac{2230986455485300015004064949117503155709456}{5241987510967920338128344116009602198778623} a^{11} - \frac{964644173848674745093532191071676677246899}{5241987510967920338128344116009602198778623} a^{10} - \frac{313807849204859485231896515930108666836334}{5241987510967920338128344116009602198778623} a^{9} - \frac{1330709993485622839274380803584252141769674}{5241987510967920338128344116009602198778623} a^{8} + \frac{1628335968879968444670430275309219671298675}{5241987510967920338128344116009602198778623} a^{7} - \frac{2472187712970112259453748035819697227059655}{5241987510967920338128344116009602198778623} a^{6} - \frac{1727598257677937839223711715471663018043614}{5241987510967920338128344116009602198778623} a^{5} + \frac{1684433637450466745043009981893498154980411}{5241987510967920338128344116009602198778623} a^{4} - \frac{819859627314244122577122050299870337047601}{5241987510967920338128344116009602198778623} a^{3} + \frac{787331386263007700574674532516305881587169}{5241987510967920338128344116009602198778623} a^{2} - \frac{1154899054066385905064403778365341485686090}{5241987510967920338128344116009602198778623} a - \frac{77588590981197474752768395487431001950325}{5241987510967920338128344116009602198778623}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14476829.7122 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.5.24217.1, 10.0.306720195547.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||
| 523 | Data not computed | ||||||