Normalized defining polynomial
\( x^{20} + 80 x^{18} + 2720 x^{16} - 101 x^{15} + 51200 x^{14} - 6060 x^{13} + 582400 x^{12} - 145440 x^{11} + 4111321 x^{10} - 1777600 x^{9} + 18020840 x^{8} - 11635200 x^{7} + 49539760 x^{6} - 40331421 x^{5} + 89987200 x^{4} - 82660420 x^{3} + 98054400 x^{2} - 123793680 x + 161532401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5867314468047698028385639190673828125=5^{35}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(425=5^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{425}(256,·)$, $\chi_{425}(1,·)$, $\chi_{425}(322,·)$, $\chi_{425}(67,·)$, $\chi_{425}(324,·)$, $\chi_{425}(69,·)$, $\chi_{425}(203,·)$, $\chi_{425}(341,·)$, $\chi_{425}(86,·)$, $\chi_{425}(407,·)$, $\chi_{425}(152,·)$, $\chi_{425}(409,·)$, $\chi_{425}(154,·)$, $\chi_{425}(288,·)$, $\chi_{425}(33,·)$, $\chi_{425}(171,·)$, $\chi_{425}(237,·)$, $\chi_{425}(239,·)$, $\chi_{425}(373,·)$, $\chi_{425}(118,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{29} a^{10} + \frac{11}{29} a^{8} + \frac{9}{29} a^{6} - \frac{7}{29} a^{5} + \frac{10}{29} a^{4} + \frac{5}{29} a^{3} - \frac{9}{29} a^{2} - \frac{9}{29} a + \frac{9}{29}$, $\frac{1}{29} a^{11} + \frac{11}{29} a^{9} + \frac{9}{29} a^{7} - \frac{7}{29} a^{6} + \frac{10}{29} a^{5} + \frac{5}{29} a^{4} - \frac{9}{29} a^{3} - \frac{9}{29} a^{2} + \frac{9}{29} a$, $\frac{1}{29} a^{12} + \frac{4}{29} a^{8} - \frac{7}{29} a^{7} - \frac{2}{29} a^{6} - \frac{5}{29} a^{5} - \frac{3}{29} a^{4} - \frac{6}{29} a^{3} - \frac{8}{29} a^{2} + \frac{12}{29} a - \frac{12}{29}$, $\frac{1}{3956947021} a^{13} - \frac{62734977}{3956947021} a^{12} + \frac{52}{3956947021} a^{11} - \frac{9457018}{3956947021} a^{10} + \frac{1040}{3956947021} a^{9} - \frac{33779875}{3956947021} a^{8} - \frac{1091561608}{3956947021} a^{7} + \frac{861859462}{3956947021} a^{6} - \frac{136399857}{3956947021} a^{5} - \frac{929643712}{3956947021} a^{4} - \frac{1637264204}{3956947021} a^{3} - \frac{986453170}{3956947021} a^{2} - \frac{1500857691}{3956947021} a - \frac{204051099}{3956947021}$, $\frac{1}{3956947021} a^{14} + \frac{56}{3956947021} a^{12} - \frac{21952990}{3956947021} a^{11} + \frac{1232}{3956947021} a^{10} + \frac{1490104522}{3956947021} a^{9} + \frac{13440}{3956947021} a^{8} + \frac{1737347614}{3956947021} a^{7} - \frac{1637282124}{3956947021} a^{6} - \frac{800979357}{3956947021} a^{5} - \frac{1091370888}{3956947021} a^{4} - \frac{1547803154}{3956947021} a^{3} - \frac{409138643}{3956947021} a^{2} + \frac{1872736514}{3956947021} a + \frac{32768}{3956947021}$, $\frac{1}{3956947021} a^{15} - \frac{56401952}{3956947021} a^{12} - \frac{1680}{3956947021} a^{11} - \frac{26999205}{3956947021} a^{10} - \frac{44800}{3956947021} a^{9} - \frac{1419497999}{3956947021} a^{8} + \frac{1227534201}{3956947021} a^{7} - \frac{1035959181}{3956947021} a^{6} - \frac{957533591}{3956947021} a^{5} + \frac{1118630180}{3956947021} a^{4} - \frac{550803396}{3956947021} a^{3} + \frac{1034623495}{3956947021} a^{2} + \frac{542836676}{3956947021} a - \frac{34640172}{3956947021}$, $\frac{1}{3956947021} a^{16} - \frac{1920}{3956947021} a^{12} + \frac{40526870}{3956947021} a^{11} - \frac{56320}{3956947021} a^{10} + \frac{1977720236}{3956947021} a^{9} - \frac{691200}{3956947021} a^{8} - \frac{78240293}{3956947021} a^{7} - \frac{413468115}{3956947021} a^{6} - \frac{1143373160}{3956947021} a^{5} - \frac{284361698}{3956947021} a^{4} - \frac{1579132899}{3956947021} a^{3} - \frac{1103368072}{3956947021} a^{2} + \frac{1434621924}{3956947021} a - \frac{1966080}{3956947021}$, $\frac{1}{3956947021} a^{17} - \frac{64860952}{3956947021} a^{12} + \frac{43520}{3956947021} a^{11} + \frac{1978383}{136446449} a^{10} + \frac{1305600}{3956947021} a^{9} + \frac{1513820370}{3956947021} a^{8} + \frac{47569138}{136446449} a^{7} + \frac{32278449}{3956947021} a^{6} - \frac{194905058}{3956947021} a^{5} + \frac{1226314859}{3956947021} a^{4} + \frac{43403048}{136446449} a^{3} + \frac{1867033440}{3956947021} a^{2} - \frac{854855063}{3956947021} a - \frac{176801450}{3956947021}$, $\frac{1}{3956947021} a^{18} + \frac{52224}{3956947021} a^{12} + \frac{18981386}{3956947021} a^{11} + \frac{1723392}{3956947021} a^{10} - \frac{209139193}{3956947021} a^{9} + \frac{22560768}{3956947021} a^{8} + \frac{711408508}{3956947021} a^{7} - \frac{132514786}{3956947021} a^{6} + \frac{529605746}{3956947021} a^{5} - \frac{1099830619}{3956947021} a^{4} - \frac{481509929}{3956947021} a^{3} - \frac{1625562399}{3956947021} a^{2} - \frac{1694257381}{3956947021} a + \frac{71303168}{3956947021}$, $\frac{1}{3956947021} a^{19} - \frac{61713154}{3956947021} a^{12} - \frac{992256}{3956947021} a^{11} + \frac{10916357}{3956947021} a^{10} - \frac{31752192}{3956947021} a^{9} - \frac{1331235348}{3956947021} a^{8} + \frac{1802116880}{3956947021} a^{7} + \frac{1735658378}{3956947021} a^{6} + \frac{969681590}{3956947021} a^{5} - \frac{870884723}{3956947021} a^{4} + \frac{1967676223}{3956947021} a^{3} - \frac{1339405945}{3956947021} a^{2} + \frac{974533739}{3956947021} a + \frac{988498868}{3956947021}$
Class group and class number
$C_{11}\times C_{5302}$, which has order $58322$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.36125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||