Normalized defining polynomial
\( x^{20} - 9 x^{19} + 50 x^{18} - 182 x^{17} + 513 x^{16} - 1144 x^{15} + 2276 x^{14} - 4140 x^{13} + 7446 x^{12} - 12391 x^{11} + 19211 x^{10} - 25956 x^{9} + 31800 x^{8} - 34122 x^{7} + 32829 x^{6} - 27669 x^{5} + 20016 x^{4} - 12631 x^{3} + 6082 x^{2} - 2920 x + 1193 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(585238828401142794165873178681=11^{10}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4588596039828075109236498781458977} a^{19} + \frac{1101415785249243605312845918646963}{4588596039828075109236498781458977} a^{18} + \frac{2279876883379286256346298924647437}{4588596039828075109236498781458977} a^{17} + \frac{1492119109387689400943862904906026}{4588596039828075109236498781458977} a^{16} + \frac{259202965075044596948562229962592}{4588596039828075109236498781458977} a^{15} + \frac{25708887947566394815739939204}{23775109014653238907961133582689} a^{14} - \frac{2215547780762946644323890296456092}{4588596039828075109236498781458977} a^{13} - \frac{1200749090231278334261275974316854}{4588596039828075109236498781458977} a^{12} + \frac{1787853587120879759984346411532733}{4588596039828075109236498781458977} a^{11} - \frac{2018560835273550590251152663953896}{4588596039828075109236498781458977} a^{10} - \frac{765756583814604887124441163328387}{4588596039828075109236498781458977} a^{9} - \frac{1822631339322532080176986242332016}{4588596039828075109236498781458977} a^{8} - \frac{1531237068149808379578951691718485}{4588596039828075109236498781458977} a^{7} + \frac{2079668109763986076481545642159149}{4588596039828075109236498781458977} a^{6} + \frac{1189924344527828059000471225243336}{4588596039828075109236498781458977} a^{5} - \frac{2034848084510693373172543161066334}{4588596039828075109236498781458977} a^{4} - \frac{2002829321398207722492218261410654}{4588596039828075109236498781458977} a^{3} + \frac{1413112472375230839974317946136696}{4588596039828075109236498781458977} a^{2} - \frac{22066907024296382654161979420082}{655513719975439301319499825922711} a - \frac{343804906943986004115281764914939}{4588596039828075109236498781458977}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1323941.60611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for t20n145 |
| Character table for t20n145 |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 10.4.6322388744771.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.31083371.1, 6.4.2237411.1 |
| Degree 10 sibling: | 10.4.6322388744771.1 |
| Degree 12 siblings: | 12.0.5006007982921.1, Deg 12 |
| Degree 15 siblings: | Deg 15, 15.7.14145782123826827881.1 |
| Degree 20 siblings: | Deg 20, Deg 20 |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||