Normalized defining polynomial
\( x^{20} + 880 x^{18} + 332640 x^{16} + 70613400 x^{14} + 9223517600 x^{12} + 761619477520 x^{10} + 39102956021800 x^{8} + 1163689163929600 x^{6} + 16694916231268000 x^{4} + 59652203230294400 x^{2} + 29061634614163360 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(582999585691243011742105600000000000000000000000000000000000=2^{55}\cdot 5^{35}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $973.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4400=2^{4}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4400}(2587,·)$, $\chi_{4400}(1,·)$, $\chi_{4400}(1283,·)$, $\chi_{4400}(2161,·)$, $\chi_{4400}(9,·)$, $\chi_{4400}(2507,·)$, $\chi_{4400}(81,·)$, $\chi_{4400}(1603,·)$, $\chi_{4400}(729,·)$, $\chi_{4400}(667,·)$, $\chi_{4400}(2723,·)$, $\chi_{4400}(2243,·)$, $\chi_{4400}(3441,·)$, $\chi_{4400}(489,·)$, $\chi_{4400}(1521,·)$, $\chi_{4400}(563,·)$, $\chi_{4400}(1227,·)$, $\chi_{4400}(169,·)$, $\chi_{4400}(1849,·)$, $\chi_{4400}(2747,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{44} a^{10}$, $\frac{1}{44} a^{11}$, $\frac{1}{88} a^{12}$, $\frac{1}{88} a^{13}$, $\frac{1}{3256} a^{14} + \frac{1}{407} a^{12} - \frac{5}{814} a^{10} - \frac{3}{37} a^{8} + \frac{5}{74} a^{6} - \frac{1}{37} a^{4} + \frac{14}{37} a^{2} + \frac{4}{37}$, $\frac{1}{172568} a^{15} + \frac{933}{172568} a^{13} + \frac{164}{21571} a^{11} - \frac{715}{7844} a^{9} - \frac{386}{1961} a^{7} + \frac{221}{1961} a^{5} - \frac{393}{1961} a^{3} - \frac{662}{1961} a$, $\frac{1}{14840848} a^{16} + \frac{69}{7420424} a^{14} + \frac{8543}{3710212} a^{12} + \frac{7375}{1855106} a^{10} + \frac{9824}{84323} a^{8} + \frac{40395}{168646} a^{6} + \frac{41583}{168646} a^{4} + \frac{9792}{84323} a^{2} + \frac{747}{1591}$, $\frac{1}{14840848} a^{17} - \frac{17}{7420424} a^{15} + \frac{21171}{7420424} a^{13} - \frac{20833}{1855106} a^{11} + \frac{16463}{337292} a^{9} + \frac{11232}{84323} a^{7} + \frac{3571}{168646} a^{5} - \frac{40733}{84323} a^{3} + \frac{12200}{84323} a$, $\frac{1}{11736098857387766351566097598005149128365233387408} a^{18} + \frac{1088873796342830689287925612740504152833}{110717913748941191995906581113256123852502201768} a^{16} - \frac{2602212000170665659933447932708656035627581}{66682379871521399724807372715938347320257007883} a^{14} - \frac{14544040838133795704392246473090160806289127915}{2934024714346941587891524399501287282091308346852} a^{12} + \frac{7030068123575365350159886392821192590221987155}{1467012357173470793945762199750643641045654173426} a^{10} - \frac{1193428141603924405316859888578856147098697759}{66682379871521399724807372715938347320257007883} a^{8} - \frac{3769718951143060963949715434825139787311554861}{66682379871521399724807372715938347320257007883} a^{6} + \frac{13165403810807520238510386791243164819358026287}{133364759743042799449614745431876694640514015766} a^{4} + \frac{26860019443985425108722396294208147022992552245}{66682379871521399724807372715938347320257007883} a^{2} - \frac{490598732021913242934794330052652968232899423}{1258158110783422636317120239923365043778434111}$, $\frac{1}{271303397286232994749153478173085032400419100216710736} a^{19} - \frac{425797774753440045819203332927444427131952835}{24663945207839363159013952561189548400038100019700976} a^{17} - \frac{2925780850216854023234031138911941852765811719}{67825849321558248687288369543271258100104775054177684} a^{15} + \frac{393739438665039828450661782593684770466549247984039}{135651698643116497374576739086542516200209550108355368} a^{13} - \frac{177637586173899193092433290653477421794499032923435}{16956462330389562171822092385817814525026193763544421} a^{11} + \frac{190898801307687645788850887710231423177864743893797}{3082993150979920394876744070148693550004762502462622} a^{9} + \frac{260092036397707383537347552359084612671993949972257}{1541496575489960197438372035074346775002381251231311} a^{7} - \frac{650466734003512198141297485062971326685760531847925}{3082993150979920394876744070148693550004762502462622} a^{5} - \frac{596408197423638129078276834621224367090410290886927}{1541496575489960197438372035074346775002381251231311} a^{3} - \frac{229588750900446532019822501893913392938917511049573}{1541496575489960197438372035074346775002381251231311} a$
Class group and class number
$C_{3}\times C_{3}\times C_{6}\times C_{1198931340}$, which has order $64742292360$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94527714076.15956 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.30976000.2, 5.5.5719140625.3, 10.10.5358972025000000000000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | $20$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||