Normalized defining polynomial
\( x^{20} + 880 x^{18} + 306240 x^{16} + 54245400 x^{14} + 5249103200 x^{12} + 278566111120 x^{10} + 7831272677800 x^{8} + 103761119545600 x^{6} + 446208997828000 x^{4} + 9488880790400 x^{2} + 3596332960 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(582999585691243011742105600000000000000000000000000000000000=2^{55}\cdot 5^{35}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $973.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4400=2^{4}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4400}(1547,·)$, $\chi_{4400}(1,·)$, $\chi_{4400}(963,·)$, $\chi_{4400}(3041,·)$, $\chi_{4400}(2323,·)$, $\chi_{4400}(1929,·)$, $\chi_{4400}(1867,·)$, $\chi_{4400}(403,·)$, $\chi_{4400}(3281,·)$, $\chi_{4400}(2243,·)$, $\chi_{4400}(1849,·)$, $\chi_{4400}(2507,·)$, $\chi_{4400}(2721,·)$, $\chi_{4400}(4009,·)$, $\chi_{4400}(2987,·)$, $\chi_{4400}(2483,·)$, $\chi_{4400}(2561,·)$, $\chi_{4400}(3369,·)$, $\chi_{4400}(889,·)$, $\chi_{4400}(827,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{44} a^{10}$, $\frac{1}{44} a^{11}$, $\frac{1}{88} a^{12}$, $\frac{1}{88} a^{13}$, $\frac{1}{88} a^{14}$, $\frac{1}{88} a^{15}$, $\frac{1}{16657168} a^{16} + \frac{779}{757144} a^{14} + \frac{347}{8328584} a^{12} + \frac{26903}{4164292} a^{10} - \frac{2187}{378572} a^{8} + \frac{495}{6106} a^{6} - \frac{2654}{94643} a^{4} - \frac{13093}{94643} a^{2} - \frac{1861}{94643}$, $\frac{1}{16657168} a^{17} + \frac{779}{757144} a^{15} + \frac{347}{8328584} a^{13} + \frac{26903}{4164292} a^{11} - \frac{2187}{378572} a^{9} + \frac{495}{6106} a^{7} - \frac{2654}{94643} a^{5} - \frac{13093}{94643} a^{3} - \frac{1861}{94643} a$, $\frac{1}{2832169794875071370145200545873642336669776565973140016} a^{18} + \frac{1511481613908060989969291072481387232129051881}{2832169794875071370145200545873642336669776565973140016} a^{16} - \frac{221154292536792038918370763894207226048042830176294}{177010612179691960634075034117102646041861035373321251} a^{14} + \frac{31220501103228274964373308166359957005077504522546}{5710019747731998730131452713454924065866485012042621} a^{12} - \frac{412945898705044657488459451921841079312576062951335}{64367495338069803866936376042582780378858558317571364} a^{10} - \frac{3278077859738620952084598656119470305615788455823663}{32183747669034901933468188021291390189429279158785682} a^{8} + \frac{132831060609363752608900308434695572563800470480332}{16091873834517450966734094010645695094714639579392841} a^{6} - \frac{4685841087077497659168858109366118397781417184201873}{32183747669034901933468188021291390189429279158785682} a^{4} + \frac{398856994857551294321629553072059113070865627321098}{16091873834517450966734094010645695094714639579392841} a^{2} + \frac{384704148078015409723470147660372831146204229218730}{16091873834517450966734094010645695094714639579392841}$, $\frac{1}{1220665181591155760532581435271539847104673699934423346896} a^{19} - \frac{1392002327937222626096153870188242396080407026301}{76291573849447235033286339704471240444042106245901459181} a^{17} + \frac{23461190819461780819017672501033554151089587932859727}{4298116836588576621593596603068802278537583450473321644} a^{15} + \frac{683911519399378229123156602849427039781797808389478517}{305166295397788940133145358817884961776168424983605836724} a^{13} - \frac{961650670380983522013609573898299389653881896871322519}{152583147698894470066572679408942480888084212491802918362} a^{11} + \frac{8299715573571619746852558846688974469388569544908417}{390737894235325147417599691188072934412507586406665604} a^{9} - \frac{1532320606873584962388123933151036545836494281332645035}{13871195245354042733324789037176589171644019317436628942} a^{7} - \frac{1914033947584817252290835790566363918914081055250624163}{13871195245354042733324789037176589171644019317436628942} a^{5} + \frac{1933397561619321341639371968524939480647086675527412701}{6935597622677021366662394518588294585822009658718314471} a^{3} - \frac{2548955909025289366418324255076885543970581576272339554}{6935597622677021366662394518588294585822009658718314471} a$
Class group and class number
$C_{2}\times C_{48365690180}$, which has order $96731380360$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86035906530.77673 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.30976000.2, 5.5.5719140625.1, 10.10.5358972025000000000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | $20$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||