Normalized defining polynomial
\( x^{20} - 10 x^{19} + 79 x^{18} - 426 x^{17} + 2029 x^{16} - 7868 x^{15} + 27546 x^{14} - 82468 x^{13} + 225633 x^{12} - 539374 x^{11} + 1180345 x^{10} - 2260566 x^{9} + 3977799 x^{8} - 6099092 x^{7} + 8535738 x^{6} - 10101132 x^{5} + 11433163 x^{4} - 10442226 x^{3} + 8662447 x^{2} - 4511618 x + 8823079 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58299958569124301174210560000000000=2^{30}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(261,·)$, $\chi_{440}(201,·)$, $\chi_{440}(81,·)$, $\chi_{440}(381,·)$, $\chi_{440}(149,·)$, $\chi_{440}(89,·)$, $\chi_{440}(349,·)$, $\chi_{440}(361,·)$, $\chi_{440}(289,·)$, $\chi_{440}(101,·)$, $\chi_{440}(401,·)$, $\chi_{440}(169,·)$, $\chi_{440}(29,·)$, $\chi_{440}(109,·)$, $\chi_{440}(61,·)$, $\chi_{440}(49,·)$, $\chi_{440}(9,·)$, $\chi_{440}(189,·)$, $\chi_{440}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{7} - \frac{1}{8} a^{3} - \frac{1}{8} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{8} a$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} - \frac{1}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{16} a$, $\frac{1}{14654680714290329687056} a^{18} - \frac{9}{14654680714290329687056} a^{17} + \frac{119259685823186288861}{7327340357145164843528} a^{16} - \frac{38159941942344705345}{7327340357145164843528} a^{15} - \frac{159065380949972688583}{3663670178572582421764} a^{14} - \frac{310997088960359635701}{7327340357145164843528} a^{13} + \frac{28982829541818033955}{1831835089286291210882} a^{12} - \frac{678696972503505656281}{7327340357145164843528} a^{11} + \frac{1551234899693740669529}{14654680714290329687056} a^{10} + \frac{1399641705625634096867}{14654680714290329687056} a^{9} - \frac{47933033844882731304}{915917544643145605441} a^{8} - \frac{572043290665876166413}{7327340357145164843528} a^{7} - \frac{453721059380391627413}{1831835089286291210882} a^{6} + \frac{367425788792435893641}{3663670178572582421764} a^{5} - \frac{617845601261807847297}{7327340357145164843528} a^{4} - \frac{136249453784638347337}{1831835089286291210882} a^{3} - \frac{3180496888456613596403}{14654680714290329687056} a^{2} + \frac{7016139992006329470477}{14654680714290329687056} a + \frac{37933258696869636003}{915917544643145605441}$, $\frac{1}{42243186950634018517006075088} a^{19} + \frac{1441277}{42243186950634018517006075088} a^{18} - \frac{1196912565562389242520243683}{42243186950634018517006075088} a^{17} + \frac{638417206085758290478826779}{21121593475317009258503037544} a^{16} - \frac{213842362646641395747991427}{10560796737658504629251518772} a^{15} - \frac{131690769342110619505244181}{2640199184414626157312879693} a^{14} - \frac{212931837621455408862995561}{21121593475317009258503037544} a^{13} + \frac{122760147702554404009207376}{2640199184414626157312879693} a^{12} + \frac{642649259522521510344612273}{42243186950634018517006075088} a^{11} - \frac{476400189543620128168378635}{42243186950634018517006075088} a^{10} - \frac{2266932993590587783529798135}{42243186950634018517006075088} a^{9} + \frac{1064303410156935535713135935}{10560796737658504629251518772} a^{8} + \frac{82062760210662881377415361}{2640199184414626157312879693} a^{7} + \frac{370703115414183724654866651}{5280398368829252314625759386} a^{6} + \frac{2356375244180300721016086631}{10560796737658504629251518772} a^{5} + \frac{2889492535061408288083075623}{21121593475317009258503037544} a^{4} - \frac{19778999769560764503529707779}{42243186950634018517006075088} a^{3} - \frac{14370451190126936817619357923}{42243186950634018517006075088} a^{2} + \frac{16466868819071055427553557035}{42243186950634018517006075088} a - \frac{5058290381693482937586979583}{10560796737658504629251518772}$
Class group and class number
$C_{2}\times C_{4026}$, which has order $8052$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{5}, \sqrt{-22})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.77265229938688.1, 10.0.241453843558400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |