Normalized defining polynomial
\( x^{20} - x^{19} + 6 x^{18} - x^{17} + 10 x^{16} - 48 x^{15} + 49 x^{14} - 24 x^{13} + 58 x^{12} - 161 x^{11} + 114 x^{10} - 49 x^{9} + 136 x^{8} - 224 x^{7} + 356 x^{6} - 315 x^{5} + 194 x^{4} - 83 x^{3} + 21 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57722337794481266110634089=11^{16}\cdot 23^{4}\cdot 67^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{8}{23} a^{16} + \frac{5}{23} a^{15} - \frac{7}{23} a^{14} + \frac{5}{23} a^{13} - \frac{1}{23} a^{12} - \frac{8}{23} a^{11} - \frac{3}{23} a^{10} - \frac{10}{23} a^{9} + \frac{5}{23} a^{8} + \frac{3}{23} a^{7} + \frac{10}{23} a^{6} + \frac{4}{23} a^{5} - \frac{9}{23} a^{4} - \frac{10}{23} a^{2} - \frac{1}{23} a - \frac{6}{23}$, $\frac{1}{989} a^{18} + \frac{10}{989} a^{17} - \frac{140}{989} a^{16} + \frac{371}{989} a^{15} - \frac{446}{989} a^{14} - \frac{428}{989} a^{13} + \frac{82}{989} a^{12} + \frac{280}{989} a^{11} + \frac{421}{989} a^{10} - \frac{130}{989} a^{9} + \frac{128}{989} a^{8} - \frac{191}{989} a^{7} + \frac{484}{989} a^{6} + \frac{160}{989} a^{5} + \frac{74}{989} a^{4} + \frac{174}{989} a^{3} + \frac{278}{989} a^{2} - \frac{31}{989} a + \frac{494}{989}$, $\frac{1}{66557829497876713019} a^{19} + \frac{19698548288704715}{66557829497876713019} a^{18} - \frac{330160457085715248}{66557829497876713019} a^{17} + \frac{14888715872105815010}{66557829497876713019} a^{16} - \frac{1064752199471433724}{2893818673820726653} a^{15} - \frac{19440386675798881146}{66557829497876713019} a^{14} + \frac{26384297925978670769}{66557829497876713019} a^{13} + \frac{16180746788766284935}{66557829497876713019} a^{12} - \frac{6232767323794910581}{66557829497876713019} a^{11} + \frac{15289982788387431796}{66557829497876713019} a^{10} - \frac{770158514667480986}{66557829497876713019} a^{9} + \frac{8366108236876821793}{66557829497876713019} a^{8} - \frac{25706550534937424726}{66557829497876713019} a^{7} - \frac{13809594414319617242}{66557829497876713019} a^{6} - \frac{17969806323719506616}{66557829497876713019} a^{5} - \frac{27844238130974898179}{66557829497876713019} a^{4} - \frac{33046255026563661685}{66557829497876713019} a^{3} - \frac{20506627771909415935}{66557829497876713019} a^{2} + \frac{31376415779617129108}{66557829497876713019} a + \frac{26266972702885738483}{66557829497876713019}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19549.5881568 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 112 conjugacy class representatives for t20n263 are not computed |
| Character table for t20n263 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.7597521819283.1, 10.4.14362045027.1, 10.2.113395848049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |