Normalized defining polynomial
\( x^{20} - 10 x^{18} - 10 x^{17} + 35 x^{16} + 188 x^{15} - 170 x^{14} - 880 x^{13} - 20 x^{12} + 7060 x^{11} - 8546 x^{10} - 28940 x^{9} + 103320 x^{8} - 140080 x^{7} + 90390 x^{6} - 8876 x^{5} - 21025 x^{4} + 7680 x^{3} + 860 x^{2} - 470 x + 185 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57260615372800000000000000000000=2^{30}\cdot 5^{20}\cdot 7^{8}\cdot 97\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{2} a^{9} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{878427381194285661776904517346037570056644} a^{19} - \frac{43605063650020760734282607789690249103113}{878427381194285661776904517346037570056644} a^{18} + \frac{127470653980638225437943234833857902727685}{878427381194285661776904517346037570056644} a^{17} + \frac{83848841969338184257388669532386832842847}{878427381194285661776904517346037570056644} a^{16} + \frac{47020451434412274697503187008817520484125}{439213690597142830888452258673018785028322} a^{15} - \frac{2631287195180627237897532287256750182958}{219606845298571415444226129336509392514161} a^{14} + \frac{107291323627871267786317602341554909291835}{439213690597142830888452258673018785028322} a^{13} + \frac{7647611530775442340060728863249365903563}{219606845298571415444226129336509392514161} a^{12} - \frac{39465975508068469806731673510132108668823}{439213690597142830888452258673018785028322} a^{11} - \frac{953952768179504208562888403393524405663}{14168183567649768738337169634613509194462} a^{10} - \frac{46623563709107687663938748122821025279616}{219606845298571415444226129336509392514161} a^{9} + \frac{93402980844404091418445834565426553832574}{219606845298571415444226129336509392514161} a^{8} + \frac{14212556075337387002148501718892421355479}{439213690597142830888452258673018785028322} a^{7} + \frac{107065811351083090309312667844060940403122}{219606845298571415444226129336509392514161} a^{6} + \frac{142859710731462937045625882661513365152995}{439213690597142830888452258673018785028322} a^{5} + \frac{105939289808374641221296920035814655963342}{219606845298571415444226129336509392514161} a^{4} + \frac{20319009469029347202744800137364867261861}{878427381194285661776904517346037570056644} a^{3} - \frac{275163434137064101774851204131769774697489}{878427381194285661776904517346037570056644} a^{2} - \frac{407777341877258029592092976438803559869229}{878427381194285661776904517346037570056644} a - \frac{424215086695617966630177626949706867315843}{878427381194285661776904517346037570056644}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1041095041344421983030}{441857951046636782012681} a^{19} - \frac{176320273523476946210}{441857951046636782012681} a^{18} + \frac{10354857297172686314345}{441857951046636782012681} a^{17} + \frac{24739979172393118961445}{883715902093273564025362} a^{16} - \frac{67259171858915869757609}{883715902093273564025362} a^{15} - \frac{202318018805949999816460}{441857951046636782012681} a^{14} + \frac{136878257830242723308810}{441857951046636782012681} a^{13} + \frac{1862188362682916381321135}{883715902093273564025362} a^{12} + \frac{434320246299823941597665}{883715902093273564025362} a^{11} - \frac{233744634290160728514100}{14253482291826992968151} a^{10} + \frac{7572635982056391264502675}{441857951046636782012681} a^{9} + \frac{61941795940854762069487355}{883715902093273564025362} a^{8} - \frac{202363258180019735616250835}{883715902093273564025362} a^{7} + \frac{129874711390123276307252770}{441857951046636782012681} a^{6} - \frac{80189815189681018004071262}{441857951046636782012681} a^{5} + \frac{16159724966080292342819325}{883715902093273564025362} a^{4} + \frac{27822873026964577536571545}{883715902093273564025362} a^{3} - \frac{3756568418021260549727005}{441857951046636782012681} a^{2} - \frac{931836882507170528552615}{441857951046636782012681} a + \frac{217820381586181337494962}{441857951046636782012681} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23992690.3729 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.2450000.1, 10.0.384160000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||